PIMs Papers

Before 2006

  1. Novel spiro-polymers with enhanced solubility. S. Makhseed; N. B. McKeown, Chem. Commun. 1999, (3), 255-256,
  2. Towards phthalocyanine network polymers for heterogeneous catalysis. N. B. McKeown; H. Li; S. Makhseed, Supported Catalysts and their Applications 2001, 214-217,
  3. Synthetic strategies towards macrodiscotic materials. Can a new dimension be added to liquid crystal polymers? K. Msayib; S. Makhseed; N. B. McKeown, J. Mater. Chem. 2001, 11 (11), 2784-2789, https://doi.org/10.1039/b103145g.
  4. Porphyrin-based nanoporous network polymers. N. B. McKeown; S. Hanif; K. Msayib; C. E. Tattershall; P. M. Budd, Chem. Commun. 2002, (23), 2782-2783,
  5. Phthalocyanine-based nanoporous network polymers. N. B. McKeown; S. Makhseed; P. M. Budd, Chem. Commun. 2002, (23), 2780-2781,
  6. A nanoporous network polymer derived from hexaazatrinaphthylene with potential as an adsorbent and catalyst support. P. M. Budd; B. Ghanem; K. Msayib; N. B. McKeown; C. Tattershall, J. Mater. Chem. 2003, 13 (11), 2721-2726,
  7. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity. P. M. Budd; E. S. Elabas; B. S. Ghanem; S. Makhseed; N. B. McKeown; K. J. Msayib; C. E. Tattershall; D. Wang, Adv. Mater. 2004, 16 (5), 456-+, https://doi.org/10.1002/adma.200306053.
  8. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. P. M. Budd; B. S. Ghanem; S. Makhseed; N. B. McKeown; K. J. Msayib; C. E. Tattershall, Chem. Commun. 2004, (2), 230-231, https://doi.org/10.1039/b311764b.
  9. Free volume and intrinsic microporosity in polymers. P. M. Budd; N. B. McKeown; D. Fritsch, J. Mater. Chem. 2005, 15 (20), 1977-1986, https://doi.org/10.1039/b417402j.
  10. Gas separation membranes from polymers of intrinsic microporosity. P. M. Budd; K. J. Msayib; C. E. Tattershall; B. S. Ghanem; K. J. Reynolds; N. B. McKeown; D. Fritsch, J. Membr. Sci. 2005, 251 (1-2), 263-269, https://doi.org/10.1016/j.memsci.2005.01.009.
  11. Cyclic ladder polymers by polycondensation of silylated tetrahydroxy-tetramethylspirobisindane with 1,4-dicyanotetrafluorobenzene. H. R. Kricheldorf; D. Fritsch; L. Vakhtangishvili; G. Schwarz, Macromol. Chem. Phys. 2005, 206 (22), 2239-2247, https://doi.org/10.1002/macp.200500280.
  12. Microporous polymer material. N. B. McKeown; P. M. Budd; B. Ghanem; K. Msayib, International patent PCT WO 2005/012397 2005,
  13. Polymers of Intrinsic Microporosity (PIMs): Bridging the Void between Microporous and Polymeric Materials. N. B. McKeown; P. M. Budd; K. J. Msayib; B. S. Ghanem; H. J. Kingston; C. E. Tattershall; S. Makhseed; K. J. Reynolds; D. Fritsch, Chem-Eur J 2005, 11 (9), 2610-2620, https://doi.org/10.1002/chem.200400860.

 

2006

  1. Polymers of intrinsic microporosity (PIMs): High free volume polymers for membrane applications. P. M. Budd; N. B. McKeown; D. Fritsch, Macromolecular Symposia 2006, 245, 403-405, https://doi.org/10.1002/masy.200651356.
  2. Cyclic ladder polymers based on 5,5 ‘, 6,6 ‘-tetrahydroxy-3,3,3 ‘, 3 ‘-tetramethylspirobisindane and 2,3,5,6-tetrafluoropyridines. H. R. Kricheldorf; D. Fritsch; L. Vakhtangishvili; N. Lomadze; G. Schwarz, Macromolecules 2006, 39 (15), 4990-4998, https://doi.org/10.1021/ma051398s.
  3. Cyclic and Telechelic Ladder Polymers Derived from Tetrahydroxytetramethylspirobisindane and 1,4-dicyanotetrafluorobenzene. H. R. Kricheldorf; N. Lomadze; D. Fritsch; G. Schwarz, J Polym Sci Pol Chem 2006, 44 (18), 5344-5352, https://doi.org/10.1002/pola.21627.
  4. Multicyclic polyethers derived from 1,4-dicyanotetrafluorobenzene and flexible diphenols. H. R. Kricheldorf; J. Schellenberg; G. Schwarz, Macromolecules 2006, 39 (19), 6445-6450, https://doi.org/10.1021/ma0608951.
  5. Adsorption studies of a microporous phthalocyanine network polymer. A. V. Maffei; P. M. Budd; N. B. McKeown, Langmuir 2006, 22 (9), 4225-4229, https://doi.org/10.1021/la060091z.
  6. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. N. B. McKeown; P. M. Budd, Chem. Soc. Rev. 2006, 35 (8), 675-683, https://doi.org/10.1039/b600349d.
  7. Towards polymer-based hydrogen storage materials: Engineering ultramicroporous cavities within polymers of intrinsic microporosity. N. B. McKeown; B. S. Ghanem; K. J. Msayib; P. M. Budd; C. E. Tattershall; K. Mahmood; S. Tan; D. Book; H. W. Langmi; A. Walton, Angew Chem Int Edit 2006, 45 (11), 1804-1807, https://doi.org/10.1002/anie.200504241.
  8. Polymers with intrinsic microporosity engineered for hydrogen storage. S. Trohalaki, MRS Bull. 2006, 31 (5), 366-366,

 

2007

  1. The potential of organic polymer-based hydrogen storage materials. P. M. Budd; A. Butler; J. Selbie; K. Mahmood; N. B. McKeown; B. Ghanem; K. Msayib; D. Book; A. Walton, PCCP 2007, 9 (15), 1802-1808, https://doi.org/10.1039/b618053a.
  2. Unusual temperature dependence of the positron lifetime in a polymer of intrinsic microporosity. R. L. de Miranda; J. Kruse; K. Raetzke; F. Faupel; D. Fritsch; V. Abetz; P. M. Budd; J. D. Selbie; N. B. McKeown; B. S. Ghanem, Physica Status Solidi-Rapid Research Letters 2007, 1 (5), 190-192, https://doi.org/10.1002/pssr.200701116.
  3. A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. B. S. Ghanem; K. J. Msayib; N. B. McKeown; K. D. M. Harris; Z. Pan; P. M. Budd; A. Butler; J. Selbie; D. Book; A. Walton, Chem. Commun. 2007, (1), 67-69, https://doi.org/10.1039/b614214a.
  4. Microporous polymers as potential hydrogen storage materials. N. B. McKeown; P. M. Budd; D. Book, Macromol. Rapid Commun. 2007, 28 (9), 995-1002, https://doi.org/10.1002/marc.200700054.
  5. Exploring polymers of intrinsic microporosity-microporous, soluble polyamide and Polyimide. J. Weber; O. Su; M. Antonietti; A. Thomas, Macromol. Rapid Commun. 2007, 28 (18-19), 1871-1876, https://doi.org/10.1002/marc.200700346.

 

2008

  1. Pervaporation of alcohols through highly permeable PIM-1 polymer films. S. V. Adymkanov; Y. P. Yampol’skii; A. M. Polyakov; P. M. Budd; K. J. Reynolds; N. B. McKeown; K. J. Msayib, Polymer Science Series A 2008, 50 (4), 444-450, https://doi.org/10.1134/s0965545x08040135.
  2. Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1. P. M. Budd; N. B. McKeown; B. S. Ghanem; K. J. Msayib; D. Fritsch; L. Starannikova; N. Belov; O. Sanfirova; Y. Yampolskii; V. Shantarovich, J. Membr. Sci. 2008, 325 (2), 851-860, https://doi.org/10.1016/j.memsci.2008.09.010.
  3. Novel spirobisindanes for use as precursors to polymers of intrinsic microporosity. M. Carta; K. J. Msayib; P. M. Budd; N. B. McKeown, Org. Lett. 2008, 10 (13), 2641-2643, https://doi.org/10.1021/ol800573m.
  4. Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone Groups as Materials for Membrane Gas Separation. N. Du; G. P. Robertson; J. Song; I. Pinnau; S. Thomas; M. D. Guiver, Macromolecules 2008, 41 (24), 9656-9662, https://doi.org/10.1021/ma801858d.
  5. Linear high molecular weight ladder polymer via fast polycondensation of 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethylspirobisindane with 1,4-dicyanotetrafluorobenzene. N. Du; J. Song; G. P. Robertson; I. Pinnau; M. D. Guiver, Macromol. Rapid Commun. 2008, 29 (10), 783-788, https://doi.org/10.1002/marc.200800038.
  6. Polymers of intrinsic microporosity derived from bis(phenazyl) monomers. B. S. Ghanem; N. B. McKeown; P. M. Budd; D. Fritsch, Macromolecules 2008, 41 (5), 1640-1646, https://doi.org/10.1021/ma071846r.
  7. High-performance membranes from polyimides with intrinsic microporosity. B. S. Ghanem; N. B. McKeown; P. M. Budd; J. D. Selbie; D. Fritsch, Adv. Mater. 2008, 20 (14), 2766-+, https://doi.org/10.1002/adma.200702400.
  8. Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1). M. Heuchel; D. Fritsch; P. M. Budd; N. B. McKeown; D. Hofmann, J. Membr. Sci. 2008, 318 (1-2), 84-99, https://doi.org/10.1016/j.memsci.2008.02.038.
  9. Catalysis by microporous phthalocyanine and porphyrin network polymers. H. J. Mackintosh; P. M. Budd; N. B. McKeown, J. Mater. Chem. 2008, 18 (5), 573-578, https://doi.org/10.1039/b715660j.
  10. Synthesis and characterization of fluoropolymers with intrinsic microporosity and their hydrogen adsorption studies. S. Makhseed; J. Samuel; A. Bumajdad; M. Hassan, J. Appl. Polym. Sci. 2008, 109 (4), 2591-2597, https://doi.org/10.1002/app.28372.
  11. Linear High Molecular Weight Ladder Polymers by Optimized Polycondensation of Tetrahydroxytetramethylspirobisindane and 1,4-Dicyanotetrafluorobenzene. J. Song; N. Du; Y. Dai; G. P. Robertson; M. D. Guiver; S. Thomas; I. Pinnau, Macromolecules 2008, 41 (20), 7411-7417, https://doi.org/10.1021/ma801000u.
  12. Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer. C. L. Staiger; S. J. Pas; A. J. Hill; C. J. Cornelius, Chem. Mater. 2008, 20 (8), 2606-2608, https://doi.org/10.1021/cm071722t.

 

2009

  1. Novel polymers of intrinsic microporosity (PIMs) derived from 1,1-spiro-bis(1,2,3,4-tetrahydronaphthalene)-based monomers. M. Carta; K. J. Msayib; N. B. McKeown, Tetrahedron Lett. 2009, 50 (43), 5954-5957, https://doi.org/10.1016/j.tetlet.2009.08.032.
  2. Polymers of Intrinsic Microporosity Derived from Novel Disulfone-Based Monomers. N. Du; G. P. Robertson; I. Pinnau; M. D. Guiver, Macromolecules 2009, 42 (16), 6023-6030, https://doi.org/10.1021/ma900898m.
  3. Copolymers of Intrinsic Microporosity Based on 2,2 ‘,3,3 ‘-Tetrahydroxy-1,1 ‘-dinaphthyl. N. Du; G. P. Robertson; I. Pinnau; S. Thomas; M. D. Guiver, Macromol. Rapid Commun. 2009, 30 (8), 584-588, https://doi.org/10.1002/marc.200800795.
  4. High-Performance Carboxylated Polymers of Intrinsic Microporosity (PIMs) with Tunable Gas Transport Properties. N. Du; G. P. Robertson; J. Song; I. Pinnau; M. D. Guiver, Macromolecules 2009, 42 (16), 6038-6043, https://doi.org/10.1021/ma9009017.
  5. Polymers of intrinsic microporosity: copolymers, improved synthesis and applications as membrane separation material. D. Fritsch; K. Heinrich; G. Bengtson, PMSE Prepr. 2009, 101, 761-762,
  6. Synthesis, Characterization, and Gas Permeation Properties of a Novel Group of Polymers with Intrinsic Microporosity: PIM-Polyimides. B. S. Ghanem; N. B. McKeown; P. M. Budd; N. M. Al-Harbi; D. Fritsch; K. Heinrich; L. Starannikova; A. Tokarev; Y. Yampolskii, Macromolecules 2009, 42 (20), 7881-7888, https://doi.org/10.1021/ma901430q.
  7. Binaphthalene-Based, Soluble Polyimides: The Limits of Intrinsic Microporosity. N. Ritter; M. Antonietti; A. Thomas; I. Senkovska; S. Kaskel; J. Weber, Macromolecules 2009, 42 (21), 8017-8020, https://doi.org/10.1021/ma901220c.
  8. Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer. S. Thomas; I. Pinnau; N. Du; M. D. Guiver, J. Membr. Sci. 2009, 338 (1-2), 1-4, https://doi.org/10.1016/j.memsci.2009.04.021.
  9. Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1). S. Thomas; I. Pinnau; N. Du; M. D. Guiver, J. Membr. Sci. 2009, 333 (1-2), 125-131, https://doi.org/10.1016/j.memsci.2009.02.003.
  10. New relation between diffusion and free volume: I. Predicting gas diffusion. A. W. Thornton; K. M. Nairn; A. J. Hill; J. M. Hill, J. Membr. Sci. 2009, 338 (1-2), 29-37, https://doi.org/10.1016/j.memsci.2009.03.053.

 

2010

  1. Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1). J. Ahn; W.-J. Chung; I. Pinnau; J. Song; N. Du; G. P. Robertson; M. D. Guiver, J. Membr. Sci. 2010, 346 (2), 280-287, https://doi.org/10.1016/j.memsci.2009.09.047.
  2. Highly permeable polymers for gas separation membranes. P. M. Budd; N. B. McKeown, Polymer Chemistry 2010, 1 (1), 63-68, https://doi.org/10.1039/b9py00319c.
  3. S. Carturan; A. Antonaci1; A. Quaranta; M. Tonezzer; R. Milan; G. Maggioni; G. Della Mea1, Optical Sensing Capabilities of Polymers of Intrinsic Microporosity (PIMs). In Sensors and Microsystems: AISEM 2009 Proceedings, Malcovati, P.; Baschirotto, A.; d’Amico, A.; Natale, C., Eds. Springer: 2010; Vol. 54, pp 55-58.
  4. Polymers of Intrinsic Microporosity with Dinaphthyl and Thianthrene Segments. N. Du; G. P. Robertson; I. Pinnau; M. D. Guiver, Macromolecules 2010, 43 (20), 8580-8587, https://doi.org/10.1021/ma101930x.
  5. Free Volume Investigation of Polymers of Intrinsic Microporosity (PIMs): PIM-1 and PIM1 Copolymers Incorporating Ethanoanthracene Units. T. Emmler; K. Heinrich; D. Fritsch; P. M. Budd; N. Chaukura; D. Ehlers; K. Ratzke; F. Faupel, Macromolecules 2010, 43 (14), 6075-6084, https://doi.org/10.1021/ma1008786.
  6. Polymers of intrinsic microporosity for gas permeation: a molecular simulation study. W. Fang; L. Zhang; J. Jiang, Molecular Simulation 2010, 36 (12), 992-1003, https://doi.org/10.1080/08927022.2010.498828.
  7. PRODUCTION OF POLYMERS WITH INHERENT MICROPOROSITY, D. Fritsch, US patent 2010/0130634 2010,
  8. Triptycene-Based Polymers of Intrinsic Microporosity: Organic Materials That Can Be Tailored for Gas Adsorption. B. S. Ghanem; M. Hashem; K. D. M. Harris; K. J. Msayib; M. Xu; P. M. Budd; N. Chaukura; D. Book; S. Tedds; A. Walton; N. B. McKeown, Macromolecules 2010, 43 (12), 5287-5294, https://doi.org/10.1021/ma100640m.
  9. Porous organic molecules. J. R. Holst; A. Trewin; A. I. Cooper, Nature chemistry 2010, 2 (11), 915-920,
  10. Exploitation of Intrinsic Microporosity in Polymer-Based Materials. N. B. McKeown; P. M. Budd, Macromolecules 2010, 43 (12), 5163-5176, https://doi.org/10.1021/ma1006396.
  11. Visual Indicator for Trace Organic Volatiles. N. A. Rakow; M. S. Wendland; J. E. Trend; R. J. Poirier; D. M. Paolucci; S. P. Maki; C. S. Lyons; M. J. Swierczek, Langmuir 2010, 26 (6), 3767-3770, https://doi.org/10.1021/la903483q.
  12. Micropore Analysis of Polymer Networks by Gas Sorption and Xe-129 NMR Spectroscopy: Toward a Better Understanding of Intrinsic Microporosity. J. Weber; J. Schmidt; A. Thomas; W. Boehlmann, Langmuir 2010, 26 (19), 15650-15656, https://doi.org/10.1021/la1028806.
  13. Intermolecular Interactions: New Way to Govern Transport Properties of Membrane Materials. Y. Yampolskii; A. Alentiev; G. Bondarenko; Y. Kostina; M. Heuchel, Ind. Eng. Chem. Res. 2010, 49 (23), 12031-12037, https://doi.org/10.1021/ie100097a.

 

2011

  1. Crystal Structures of 5,6,5 ‘,6 ‘-Tetramethoxy-1,1 ‘-spirobisindane-3,3 ‘-dione and two of its Fluorene Adducts. M. Carta; J. Raftery; N. B. McKeown, J. Chem. Crystallogr. 2011, 41 (2), 98-104, https://doi.org/10.1007/s10870-010-9844-1.
  2. Azide-based Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Condensable Gas Separation. N. Du; M. M. Dal-Cin; I. Pinnau; A. Nicalek; G. P. Robertson; M. D. Guiver, Macromol. Rapid Commun. 2011, 32 (8), 631-636, https://doi.org/10.1002/marc.201000775.
  3. Polymer nanosieve membranes for CO2-capture applications. N. Du; H. B. Park; G. P. Robertson; M. M. Dal-Cin; T. Visser; L. Scoles; M. D. Guiver, Nat Mater 2011, 10 (5), 372-375, https://doi.org/10.1038/nmat2989.
  4. Gas Permeation and Separation in Functionalized Polymers of Intrinsic Microporosity: A Combination of Molecular Simulations and Ab Initio Calculations. W. Fang; L. Zhang; J. Jiang, J Phys Chem C 2011, 115 (29), 14123-14130, https://doi.org/10.1021/jp204193g.
  5. Synthesis and Gas Permeation Properties of Spirobischromane-Based Polymers of Intrinsic Microporosity. D. Fritsch; G. Bengtson; M. Carta; N. B. McKeown, Macromol. Chem. Phys. 2011, 212 (11), 1137-1146, https://doi.org/10.1002/macp.201100089.
  6. Enhancing the rigidity of a network polymer of intrinsic microporosity by the combined use of phthalocyanine and triptycene components. M. Hashem; C. G. Bezzu; B. M. Kariuki; N. B. McKeown, Polymer Chemistry 2011, 2 (10), 2190-2192, https://doi.org/10.1039/c1py00288k.
  7. Intrinsically Microporous Polyesters From Betulin – Toward Renewable Materials for Gas Separation Made From Birch Bark. J. Jeromenok; W. Boehlmann; M. Antonietti; J. Weber, Macromol. Rapid Commun. 2011, 32 (22), 1846-1851, https://doi.org/10.1002/marc.201100532.
  8. Molecular Simulations of PIM-1-like Polymers of Intrinsic Microporosity. G. S. Larsen; P. Lin; K. E. Hart; C. M. Colina, Macromolecules 2011, 44 (17), 6944-6951, https://doi.org/10.1021/ma200345v.
  9. Methane adsorption in PIM-1. G. S. Larsen; P. Lin; F. R. Siperstein; C. M. Colina, Adsorption-Journal of the International Adsorption Society 2011, 17 (1), 21-26, https://doi.org/10.1007/s10450-010-9281-7.
  10. Polymer of Intrinsic Microporosity Incorporating Thioamide Functionality: Preparation and Gas Transport Properties. C. R. Mason; L. Maynard-Atem; N. M. Al-Harbi; P. M. Budd; P. Bernardo; F. Bazzarelli; G. Clarizia; J. C. Jansen, Macromolecules 2011, 44 (16), 6471-6479, https://doi.org/10.1021/ma200918h.
  11. Structural Characterization of a Polymer of Intrinsic Microporosity: X-ray Scattering with Interpretation Enhanced by Molecular Dynamics Simulations. A. G. McDermott; G. S. Larsen; P. M. Budd; C. M. Colina; J. Runt, Macromolecules 2011, 44 (1), 14-16, https://doi.org/10.1021/ma1024945.
  12. N. B. McKeown; P. M. Budd, Polymers with inherent microporosity. In Porous Polymers, John Wiley & Sons, Inc.: 2011; pp 3-29.
  13. Intrinsically Microporous Poly(imide)s: Structure-Porosity Relationship Studied by Gas Sorption and X-ray Scattering. N. Ritter; I. Senkovska; S. Kaskel; J. Weber, Macromolecules 2011, 44 (7), 2025-2033, https://doi.org/10.1021/ma102448h.
  14. Towards Chiral Microporous Soluble Polymers – Binaphthalene-Based Polyimides. N. Ritter; I. Senkovska; S. Kaskel; J. Weber, Macromol. Rapid Commun. 2011, 32 (5), 438-443, https://doi.org/10.1002/marc.201000714.
  15. Hexaphenylbenzene-based polymers of intrinsic microporosity. R. Short; M. Carta; C. G. Bezzu; D. Fritsch; B. M. Kariuki; N. B. McKeown, Chem. Commun. 2011, 47 (24), 6822-6824, https://doi.org/10.1039/c1cc11717c.
  16. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges. J. C. Thomas; J. E. Trend; N. A. Rakow; M. S. Wendland; R. J. Poirier; D. M. Paolucci, Sensors 2011, 11 (3), 3267-3280, https://doi.org/10.3390/s110303267.
  17. Tribenzotriquinacene-based polymers of intrinsic microporosity. J. Vile; M. Carta; C. G. Bezzu; N. B. McKeown, Polymer Chemistry 2011, 2 (10), 2257-2260, https://doi.org/10.1039/c1py00294e.
  18. Laser Chemosensor with Rapid Responsivity and Inherent Memory Based on a Polymer of Intrinsic Microporosity. Y. Wang; N. B. McKeown; K. J. Msayib; G. A. Turnbull; I. D. W. Samuel, Sensors 2011, 11 (3), 2478-2487, https://doi.org/10.3390/s110302478.
  19. Influence of Intermolecular Interactions on the Observable Porosity in Intrinsically Microporous Polymers. J. Weber; N. Du; M. D. Guiver, Macromolecules 2011, 44 (7), 1763-1767, https://doi.org/10.1021/ma101447h.
  20. Effects of Residual Solvent on Membrane Structure and Gas Permeation in a Polymer of Intrinsic Microporosity: Insight from Atomistic Simulation. L. Zhang; W. Fang; J. Jiang, J Phys Chem C 2011, 115 (22), 11233-11239, https://doi.org/10.1021/jp2029888.
  21. Microporous organic polymers. Y.-C. Zhao; Q. Chen; B.-H. Han, Scientia Sinica: Physica, Mechanica & Astronomica 2011, 41 (9), 1029-1035,

 

2012

  1. A Spirobifluorene-Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation. C. G. Bezzu; M. Carta; A. Tonkins; J. C. Jansen; P. Bernardo; F. Bazzarelli; N. B. McKeown, Adv. Mater. 2012, 24 (44), 5930-+, https://doi.org/10.1002/adma.201202393.
  2. Crystal Structures of a Series of 1,1-Spiro-bis(1,2,3,4-tetrahydronaphthalene)-Based Derivatives. M. Carta; M. Helliwell; N. B. McKeown, J. Chem. Crystallogr. 2012, 42 (2), 111-118, https://doi.org/10.1007/s10870-011-0211-7.
  3. Soluble Conjugated Microporous Polymers. G. Cheng; T. Hasell; A. Trewin; D. J. Adams; A. I. Cooper, Angew Chem Int Edit 2012, 51 (51), 12727-12731, https://doi.org/10.1002/anie.201205521.
  4. Decarboxylation-Induced Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Membrane Gas Separation. N. Du; M. M. Dal-Cin; G. P. Robertson; M. D. Guiver, Macromolecules 2012, 45 (12), 5134-5139, https://doi.org/10.1021/ma300751s.
  5. Polymers of intrinsic microporosity (PIMs) substituted with methyl tetrazole. N. Du; G. P. Robertson; M. M. Dal-Cin; L. Scoles; M. D. Guiver, Polymer 2012, 53 (20), 4367-4372, https://doi.org/10.1016/j.polymer.2012.07.055.
  6. Advances in high permeability polymeric membrane materials for CO2 separations. N. Y. Du; H. B. Park; M. M. Dal-Cin; M. D. Guiver, Energy & Environmental Science 2012, 5 (6), 7306-7322, https://doi.org/10.1039/c1ee02668b.
  7. High performance organic solvent nanofiltration membranes: Development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (PIMs). D. Fritsch; P. Merten; K. Heinrich; M. Lazar; M. Priske, J. Membr. Sci. 2012, 401, 222-231, https://doi.org/10.1016/j.memsci.2012.02.008.
  8. A facile synthesis of a novel triptycene-containing A-B monomer: precursor to polymers of intrinsic microporosity. B. S. Ghanem, Polymer Chemistry 2012, 3 (1), 96-98, https://doi.org/10.1039/c1py00423a.
  9. Aging and Free Volume in a Polymer of Intrinsic Microporosity (PIM-1). S. Harms; K. Raetzke; F. Faupel; N. Chaukura; P. M. Budd; W. Egger; L. Ravelli, J. Adhes. 2012, 88 (7), 608-619, https://doi.org/10.1080/00218464.2012.682902.
  10. Preconcentration and detection of chlorinated organic compounds and benzene. S. T. Hobson; S. Cemalovic; S. V. Patel, Analyst 2012, 137 (5), 1284-1289, https://doi.org/10.1039/c2an16053f.
  11. Characterization of the Gas Transport in Mixed Matrix Membranes Based on Polymers with Intrinsic Microporosity (PIMs). J. C. Jansen; P. Bernardo; F. Bazzarelli; G. Clarizia; P. M. Budd; Y. Yampolskii, Procedia Eng. 2012, 44, 103-105, https://doi.org/10.1016/j.proeng.2012.08.324.
  12. Analysis of Gas and Vapour Transport in Novel Polymers of Intrinsic Microporosity (PIMs). J. C. Jansen; P. Bernardo; F. Bazzarelli; N. B. McKeown; K. Friess; Y. Yampolskii, Procedia Eng. 2012, 44, 150-151, https://doi.org/10.1016/j.proeng.2012.08.340.
  13. Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation. M. M. Khan; V. Filiz; G. Bengtson; S. Shishatskiy; M. Rahman; V. Abetz, Nanoscale Research Letters 2012, 7, 1-12, https://doi.org/10.1186/1556-276x-7-504.
  14. High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development. F. Y. Li; Y. Xiao; T.-S. Chung; S. Kawi, Macromolecules 2012, 45 (3), 1427-1437, https://doi.org/10.1021/ma202667y.
  15. UV-Rearranged PIM-1 Polymeric Membranes for Advanced Hydrogen Purification and Production. F. Y. Li; Y. Xiao; Y. K. Ong; T.-S. Chung, Advanced Energy Materials 2012, 2 (12), 1456-1466, https://doi.org/10.1002/aenm.201200296.
  16. Synthesis and Gas Transport Properties of Hydroxyl-Functionalized Polyimides with Intrinsic Microporosity. X. Ma; R. Swaidan; Y. Belmabkhout; Y. Zhu; E. Litwiller; M. Jouiad; I. Pinnau; Y. Han, Macromolecules 2012, 45 (9), 3841-3849, https://doi.org/10.1021/ma300549m.
  17. Phthalimide based polymers of intrinsic microporosity. S. Makhseed; F. Ibrahim; J. Samuel, Polymer 2012, 53 (14), 2964-2972, https://doi.org/10.1016/j.polymer.2012.05.001.
  18. Polymers of Intrinsic Microporosity. N. B. McKeown, ISRN Materials Science 2012, Article ID 513986, https://doi.org/10.5402/2012/513986.
  19. Non Equilibrium Modeling of Sorption of Gases and Vapors in Polymers of Intrinsic Microporosity (PIM). M. Minelli; K. Friess; O. Vopicka; V. Hynek; M. Lanc; M. G. De Angelis, Procedia Eng. 2012, 44, 147-149, https://doi.org/10.1016/j.proeng.2012.08.339.
  20. Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. H. A. Patel; C. T. Yavuz, Chem. Commun. 2012, 48 (80), 9989-9991, https://doi.org/10.1039/c2cc35392j.
  21. Intrinsic Microporosity Polymers (tb-pims) Membrane of New Generation: Molecular Modelling and Permeation Properties. E. Tocci; L. De Lorenzo; J. C. Jansen; P. Bernardo; F. Bazzarelli; N. B. McKeown, Procedia Eng. 2012, 44, 113-115, https://doi.org/10.1016/j.proeng.2012.08.328.
  22. Solvent nanofiltration through high permeability glassy polymers: Effect of polymer and solute nature. S. Tsarkov; V. Khotimskiy; P. M. Budd; V. Volkov; J. Kukushkina; A. Volkov, J. Membr. Sci. 2012, 423, 65-72, https://doi.org/10.1016/j.memsci.2012.07.026.
  23. O. Vopicka; M. G. De Angelis; G. C. Sarti; N. Du; N. Li; M. D. Guiver, Sorption of CO2/CH4 mixtures in PIM-1 and PTMSP membranes: Experimental data at 35 degrees C and modeling. In Euromembrane Conference 2012, Marsh, N., Ed. 2012; Vol. 44, pp 758-759.
  24. Explosive Sensing Using Polymer Lasers. Y. Wang; Y. Yang; G. A. Turnbull; I. D. W. Samuel, Molecular Crystals and Liquid Crystals 2012, 554, 103-110, https://doi.org/10.1080/15421406.2012.633812.
  25. Polymeric Gas Separation Membranes. Y. Yampolskii, Macromolecules 2012, 45 (8), 3298-3311, https://doi.org/10.1021/ma3002138.
  26. Molecular engineering of PIM-1/Matrimid blend membranes for gas separation. W. F. Yong; F. Y. Li; Y. C. Xiao; P. Li; K. P. Pramoda; Y. W. Tong; T. S. Chung, J. Membr. Sci. 2012, 407, 47-57, https://doi.org/10.1016/j.memsci.2012.03.038.
  27. Grand Canonical Monte Carlo simulations for energy gases on PIM-1 polymer and silicalite-1. L. Zhao; D. Zhai; B. Liu; Z. Liu; C. Xu; W. Wei; Y. Chen; J. Gao, Chem. Eng. Sci. 2012, 68 (1), 101-107, https://doi.org/10.1016/j.ces.2011.09.017.
  28. A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation. X. Zhu; C. Tian; S. M. Mahurin; S.-H. Chai; C. Wang; S. Brown; G. M. Veith; H. Luo; H. Liu; S. Dai, J. Am. Chem. Soc. 2012, 134 (25), 10478-10484, https://doi.org/10.1021/ja304879c.

 

2013

  1. Characterizing the Structure of Organic Molecules of Intrinsic Microporosity by Molecular Simulations and X-ray Scattering. L. J. Abbott; A. G. McDermott; A. Del Regno; R. G. D. Taylor; C. G. Bezzu; K. J. Msayib; N. B. McKeown; F. R. Siperstein; J. Runt; C. M. Colina, J. Phys. Chem. B 2013, 117 (1), 355-364, https://doi.org/10.1021/jp308798u.
  2. Design principles for microporous organic solids from predictive computational screening. L. J. Abbott; N. B. McKeown; C. M. Colina, J Mater Chem A 2013, 1 (38), 11950-11960, https://doi.org/10.1039/c3ta12442h.
  3. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. A. F. Bushell; M. P. Attfield; C. R. Mason; P. M. Budd; Y. Yampolskii; L. Starannikova; A. Rebrov; F. Bazzarelli; P. Bernardo; J. C. Jansen; M. Lanc; K. Friess; V. Shantarovich; V. Gustov; V. Isaeva, J. Membr. Sci. 2013, 427, 48-62, https://doi.org/10.1016/j.memsci.2012.09.035.
  4. Nanoporous Organic Polymer/Cage Composite Membranes. A. F. Bushell; P. M. Budd; M. P. Attfield; J. T. A. Jones; T. Hasell; A. I. Cooper; P. Bernardo; F. Bazzarelli; G. Clarizia; J. C. Jansen, Angew Chem Int Edit 2013, 52 (4), 1253-1256, https://doi.org/10.1002/anie.201206339.
  5. An Efficient Polymer Molecular Sieve for Membrane Gas Separations. M. Carta; R. Malpass-Evans; M. Croad; Y. Rogan; J. C. Jansen; P. Bernardo; F. Bazzarelli; N. B. McKeown, Science 2013, 339 (6117), 303-307, https://doi.org/10.1126/science.1228032.
  6. Molecular modelling of polyimides with intrinsic microporosity: from structural characteristics to transport behaviour. K.-S. Chang; K.-L. Tung; Y.-F. Lin; H.-Y. Lin, Rsc Adv 2013, 3 (26), 10403-10413, https://doi.org/10.1039/c3ra40196k.
  7. Effect of the Porosity of a Polymer of Intrinsic Microporosity (PIM) on Its Intrinsic Fluorescence. S. Chen; W. Yi; J. Duhamel; K. Heinrich; G. Bengtson; D. Fritsch, J. Phys. Chem. B 2013, 117 (17), 5249-5260, https://doi.org/10.1021/jp307173k.
  8. Gas Solubility, Diffusivity, Permeability, and Selectivity in Mixed Matrix Membranes Based on PIM-1 and Fumed Silica. M. G. De Angelis; R. Gaddoni; G. C. Sarti, Industrial & Engineering Chemistry Research 2013, 52 (31), 10506-10520, https://doi.org/10.1021/ie303571h.
  9. Polymers of Intrinsic Microporosity Containing Troger Base for CO2 Capture. A. Del Regno; A. Gonciaruk; L. Leay; M. Carta; M. Croad; R. Malpass-Evans; N. B. McKeown; F. R. Siperstein, Industrial & Engineering Chemistry Research 2013, 52 (47), 16939-16950, https://doi.org/10.1021/ie402846a.
  10. Organic molecules of intrinsic microporosity: Characterization of novel microporous materials. A. Del Regno; F. R. Siperstein, Microporous Mesoporous Mater. 2013, 176, 55-63, https://doi.org/10.1016/j.micromeso.2013.03.041.
  11. Polymer Rigidity Improves Microporous Membranes. M. D. Guiver; Y. M. Lee, Science 2013, 339 (6117), 284-285, https://doi.org/10.1126/science.1232714.
  12. Analysis of force fields and BET theory for polymers of intrinsic microporosity. K. E. Hart; L. J. Abbott; C. M. Colina, Molecular Simulation 2013, 39 (5), 397-404, https://doi.org/10.1080/08927022.2012.733945.
  13. Toward Effective CO2/CH4 Separations by Sulfur-Containing PIMs via Predictive Molecular Simulations. K. E. Hart; L. J. Abbott; N. B. McKeown; C. M. Colina, Macromolecules 2013, 46 (13), 5371-5380, https://doi.org/10.1021/ma400334b.
  14. Simulated swelling during low-temperature N-2 adsorption in polymers of intrinsic microporosity. K. E. Hart; J. M. Springmeier; N. B. McKeown; C. M. Colina, PCCP 2013, 15 (46), 20161-20169, https://doi.org/10.1039/c3cp53402b.
  15. Gas sorption isotherms in swelling glassy polymers-Detailed atomistic simulations. O. Hoelck; M. Boehning; M. Heuchel; M. R. Siegert; D. Hofmann, J. Membr. Sci. 2013, 428, 523-532, https://doi.org/10.1016/j.memsci.2012.10.023.
  16. Synthesis of linear unbranched polymers chain free of macrocyclic species and oligomers based on chloro-monomers and TTSBI. F. Ibrahim, Elixir International Journal 2013, (Nov.), 19054-19059, 6 pp.,
  17. Synthesis and characterization of linear polyimides with intrinsic microporosity and their hydrogen adsorption studies. F. Ibrahim, Elixir International Journal 2013, (Sept.), 17542-17548,
  18. A polymer of intrinsic microporosity as the active binder to enhance adsorption/separation properties of composite hollow fibres. C. A. Jeffs; M. W. Smith; C. A. Stone; C. G. Bezzu; K. J. Msayib; N. B. McKeown; S. P. Perera, Microporous Mesoporous Mater. 2013, 170, 105-112, https://doi.org/10.1016/j.micromeso.2012.11.039.
  19. Restricted Access: On the Nature of Adsorption/Desorption Hysteresis in Amorphous, Microporous Polymeric Materials. J. Jeromenok; J. Weber, Langmuir 2013, 29 (42), 12982-12989, https://doi.org/10.1021/la402630s.
  20. Cross-linking of Polymer of Intrinsic Microporosity (PIM-1) via nitrene reaction and its effect on gas transport property. M. M. Khan; G. Bengtson; S. Shishatskiy; B. N. Gacal; M. M. Rahman; S. Neumann; V. Filiz; V. Abetz, Eur. Polym. J. 2013, 49 (12), 4157-4166, https://doi.org/10.1016/j.eurpolymj.2013.09.022.
  21. Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM). M. M. Khan; V. Filiz; G. Bengtson; S. Shishatskiy; M. M. Rahman; J. Lillepaerg; V. Abetz, J. Membr. Sci. 2013, 436, 109-120, https://doi.org/10.1016/j.memsci.2013.02.032.
  22. Single Polymer Chain Surface Area as a Descriptor for Rapid Screening of Microporous Polymers for Gas Adsorption. L. Leay; F. R. Siperstein, Adsorption Science & Technology 2013, 31 (1), 99-112, https://doi.org/10.1260/0263-6174.31.1.99.
  23. Physical aging, high temperature and water vapor permeation studies of UV-rearranged PIM-1 membranes for advanced hydrogen purification and production. F. Y. Li; T.-S. Chung, Int. J. Hydrogen Energy 2013, 38 (23), 9786-9793, https://doi.org/10.1016/j.ijhydene.2013.05.056.
  24. Gas sorption and permeation in PIM-1. P. Li; T. S. Chung; D. R. Paul, J. Membr. Sci. 2013, 432, 50-57, https://doi.org/10.1016/j.memsci.2013.01.009.
  25. Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation. S. Li; H. J. Jo; S. H. Han; C. H. Park; S. Kim; P. M. Budd; Y. M. Lee, J. Membr. Sci. 2013, 434, 137-147, https://doi.org/10.1016/j.memsci.2013.01.011.
  26. Novel Spirobifluorene- and Dibromospirobifluorene-Based Polyimides of Intrinsic Microporosity for Gas Separation Applications. X. Ma; O. Salinas; E. Litwiller; I. Pinnau, Macromolecules 2013, 46 (24), 9618-9624,
  27. Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. X. Ma; R. Swaidan; B. Teng; H. Tan; O. Salinas; E. Litwiller; Y. Han; I. Pinnau, Carbon 2013, 62, 88-96, https://doi.org/10.1016/j.carbon.2013.05.057.
  28. Molecular modeling investigation of the fundamental structural parameters of polymers of intrinsic microporosity for the design of tailor-made ultra-permeable and highly selective gas separation membranes. T. M. Madkour; J. E. Mark, J. Membr. Sci. 2013, 431, 37-46, https://doi.org/10.1016/j.memsci.2012.12.033.
  29. Microporous organic polymers incorporating dicarboximide units for H-2 storage and remarkable CO2 capture. S. Makhseed; J. Samuel, J Mater Chem A 2013, 1 (41), 13004-13010, https://doi.org/10.1039/c3ta12233f.
  30. New organophilic mixed matrix membranes derived from a polymer of intrinsic microporosity and silicalite-1. C. R. Mason; M. G. Buonomenna; G. Golemme; P. M. Budd; F. Galiano; A. Figoli; K. Friess; V. Hynek, Polymer 2013, 54 (9), 2222-2230, https://doi.org/10.1016/j.polymer.2013.02.032.
  31. Polymers of intrinsic microporosity. N. B. McKeown; P. M. Budd, Encyclopedia of Membrane Science and Technology 2013, 2 (Encyclopedia of Membrane Science and Technology), 781-797, https://doi.org/10.1002/9781118522318.emst057.
  32. Modeling gas and vapor sorption in a polymer of intrinsic microporosity (PIM-1). M. Minelli; K. Friess; O. Vopicka; M. G. De Angelis, Fluid Phase Equilib. 2013, 347, 35-44, https://doi.org/10.1016/j.fluid.2013.03.003.
  33. Molecular Motions of Adsorbed CO2 on a Tetrazole-Functionalized PIM Polymer Studied with C-13 NMR. J. K. Moore; M. D. Guiver; N. Du; S. E. Hayes; M. S. Conradi, J Phys Chem C 2013, 117 (44), 22995-22999, https://doi.org/10.1021/jp4084234.
  34. Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity. Y. Rogan; L. Starannikova; V. Ryzhikh; Y. Yampolskii; P. Bernardo; F. Bazzarelli; J. C. Jansen; N. B. McKeown, Polymer Chemistry 2013, 4 (13), 3813-3820, https://doi.org/10.1039/c3py00451a.
  35. Photo-oxidative enhancement of polymeric molecular sieve membranes. Q. Song; S. Cao; P. Zavala-Rivera; L. P. Lu; W. Li; Y. Ji; S. A. Al-Muhtaseb; A. K. Cheetham; E. Sivaniah, Nature Communications 2013, 4, https://doi.org/10.1038/ncomms2942.
  36. High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity. R. Swaidan; X. Ma; E. Litwiller; I. Pinnau, J. Membr. Sci. 2013, 447, 387-394, https://doi.org/10.1016/j.memsci.2013.07.057.
  37. Equilibrium and transient sorption of vapours and gases in the polymer of intrinsic microporosity PIM-1. O. Vopicka; K. Friess; V. Hynek; P. Sysel; M. Zgazar; M. Sipek; K. Pilnacek; M. Lanc; J. C. Jansen; C. R. Mason; P. M. Budd, J. Membr. Sci. 2013, 434, 148-160, https://doi.org/10.1016/j.memsci.2013.01.040.
  38. Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification. W. F. Yong; F. Y. Li; T.-S. Chung; Y. W. Tong, J Mater Chem A 2013, 1 (44), 13914-13925, https://doi.org/10.1039/c3ta13308g.
  39. High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O-2/N-2 and CO2/N-2 separation. W. F. Yong; F. Y. Li; Y. C. Xiao; T. S. Chung; Y. W. Tong, J. Membr. Sci. 2013, 443, 156-169, https://doi.org/10.1016/j.memsci.2013.04.037.

 

2014

  1. PIM-1/MIL-101 Hybrid Composite Membrane Material: Transport Properties and Free Volume. A. Y. Alentiev; G. N. Bondarenko; Y. V. Kostina; V. P. Shantarovich; S. N. Klyamkin; V. P. Fedin; K. A. Kovalenko; Y. P. Yampolskii, Petroleum Chemistry 2014, 54 (7), 477-481, https://doi.org/10.1134/s0965544114070020.
  2. Nanoporous covalent organic polymers incorporating Troger’s base functionalities for enhanced CO2 capture. J. Byun; S.-H. Je; H. A. Patel; A. Coskun; C. T. Yavuz, J Mater Chem A 2014, 2 (31), 12507-12512, https://doi.org/10.1039/c4ta00698d.
  3. Gas Permeability of Hexaphenylbenzene Based Polymers of Intrinsic Microporosity. M. Carta; P. Bernardo; G. Clarizia; J. C. Jansen; N. B. McKeown, Macromolecules 2014, 47 (23), 8320-8327, https://doi.org/10.1021/ma501925j.
  4. Heterogeneous organocatalysts composed of microporous polymer networks assembled by Troger’s base formation. M. Carta; M. Croad; K. Bugler; K. J. Msayib; N. B. McKeown, Polymer Chemistry 2014, 5 (18), 5262-5266, https://doi.org/10.1039/c4py00608a.
  5. Synthesis of cardo-polymers using Troger’s base formation. M. Carta; M. Croad; J. C. Jansen; P. Bernardo; G. Clarizia; N. B. McKeown, Polymer Chemistry 2014, 5 (18), 5255-5261, https://doi.org/10.1039/c4py00607k.
  6. Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Troger’s Base Polymers. M. Carta; M. Croad; R. Malpass-Evans; J. C. Jansen; P. Bernardo; G. Clarizia; K. Friess; M. Lanc; N. B. McKeown, Adv. Mater. 2014, 26 (21), 3526-3531, https://doi.org/10.1002/adma.201305783.
  7. The synthesis of microporous polymers using Troger’s base formation. M. Carta; R. Malpass-Evans; M. Croad; Y. Rogan; M. Lee; I. Rose; N. B. McKeown, Polymer Chemistry 2014, 5 (18), 5267-5272, https://doi.org/10.1039/c4py00609g.
  8. Conjugated Polymers of Intrinsic Microporosity (C-PIMs). G. Cheng; B. Bonillo; R. S. Sprick; D. J. Adams; T. Hasell; A. I. Cooper, Adv. Funct. Mater. 2014, 24 (33), 5219-5224, https://doi.org/10.1002/adfm.201401001.
  9. Ultra-Microporous Triptycene-based Polyimide Membranes for High-Performance Gas Separation. B. S. Ghanem; R. Swaidan; E. Litwiller; I. Pinnau, Adv. Mater. 2014, 26 (22), 3688-3692, https://doi.org/10.1002/adma.201306229.
  10. Energy-Efficient Hydrogen Separation by AB-Type Ladder-Polymer Molecular Sieves. B. S. Ghanem; R. Swaidan; X. Ma; E. Litwiller; I. Pinnau, Adv. Mater. 2014, 26 (39), 6696-6700, https://doi.org/10.1002/adma.201401328.
  11. Ultrathin Polymer Films with Intrinsic Microporosity: Anomalous Solvent Permeation and High Flux Membranes. P. Gorgojo; S. Karan; H. C. Wong; M. F. Jimenez-Solomon; J. T. Cabral; A. G. Livingston, Adv. Funct. Mater. 2014, 24 (30), 4729-4737, https://doi.org/10.1002/adfm.201400400.
  12. PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide. L. Hao; P. Li; T.-S. Chung, J. Membr. Sci. 2014, 453, 614-623, https://doi.org/10.1016/j.memsci.2013.11.045.
  13. Formation of Defect-Free Polyetherimide/PIM-1 Hollow Fiber Membranes for Gas Separation. L. Hao; J. Zuo; T.-S. Chung, AlChE J. 2014, 60 (11), 3848-3858, https://doi.org/10.1002/aic.14565.
  14. Estimating gas permeability and permselectivity of microporous polymers. K. E. Hart; C. M. Colina, J. Membr. Sci. 2014, 468, 259-268, https://doi.org/10.1016/j.memsci.2014.06.017.
  15. Ionomers of Intrinsic Microporosity: In Silico Development of Ionic-Functionalized Gas-Separation Membranes. K. E. Hart; C. M. Colina, Langmuir 2014, 30 (40), 12039-12048, https://doi.org/10.1021/la5027202.
  16. Synthesis, characterization and gas permeation properties of anthracene maleimide-based polymers of intrinsic microporosity. M. M. Khan; G. Bengtson; S. Neumann; M. M. Rahman; V. Abetz; V. Filiz, Rsc Adv 2014, 4 (61), 32148-32160, https://doi.org/10.1039/c4ra03663h.
  17. Sulfonation of PIM-1-towards highly oxygen permeable binders for fuel cell application. B. G. Kim; D. Henkensmeier; H.-J. Kim; J. H. Jang; S. W. Nam; T.-H. Lim, Macromolecular Research 2014, 22 (1), 92-98, https://doi.org/10.1007/s13233-014-2007-z.
  18. Predictive simulations of the structural and adsorptive properties for PIM-1 variations. G. S. Larsen; K. E. Hart; C. M. Colina, Molecular Simulation 2014, 40 (7-9), 599-609, https://doi.org/10.1080/08927022.2013.829222.
  19. Ending Aging in Super Glassy Polymer Membranes. C. H. Lau; N. Phuc Tien; M. R. Hill; A. W. Thornton; K. Konstas; C. M. Doherty; R. J. Mulder; L. Bourgeois; A. C. Y. Liu; D. J. Sprouster; J. P. Sullivan; T. J. Bastow; A. J. Hill; D. L. Gin; R. D. Noble, Angew Chem Int Edit 2014, 53 (21), 5322-5326, https://doi.org/10.1002/anie.201402234.
  20. Temperature dependence of gas sorption and permeation in PIM-1. P. Li; T. S. Chung; D. R. Paul, J. Membr. Sci. 2014, 450, 380-388, https://doi.org/10.1016/j.memsci.2013.09.030.
  21. Efficient Synthesis of Rigid Ladder Polymers via Palladium Catalyzed Annulation. S. Liu; Z. Jin; Y. C. Teo; Y. Xia, J. Am. Chem. Soc. 2014, 136 (50), 17434-17437, https://doi.org/10.1021/ja5110415.
  22. Pristine and thermally-rearranged gas separation membranes from novel o-hydroxyl-functionalized spirobifluorene-based polyimides. X. Ma; O. Salinas; E. Litwiller; I. Pinnau, Polymer Chemistry 2014, 5 (24), 6914-6922, https://doi.org/10.1039/c4py01221f.
  23. Metastable Ionic Diodes Derived from an Amine-Based Polymer of Intrinsic Microporosity. E. Madrid; Y. Rong; M. Carta; N. B. McKeown; R. Malpass-Evans; G. A. Attard; T. J. Clarke; S. H. Taylor; Y.-T. Long; F. Marken, Angew Chem Int Edit 2014, 53 (40), 10751-10754, https://doi.org/10.1002/anie.201405755.
  24. Enhancement of CO2 Affinity in a Polymer of Intrinsic Microporosity by Amine Modification. C. R. Mason; L. Maynard-Atem; K. W. J. Heard; B. Satilmis; P. M. Budd; K. Friess; M. Lanc; P. Bernardo; G. Clarizia; J. C. Jansen, Macromolecules 2014, 47 (3), 1021-1029, https://doi.org/10.1021/ma401869p.
  25. Physical aging of polymers of intrinsic microporosity: a SAXS/WAXS study. A. G. McDermott; P. M. Budd; N. B. McKeown; C. M. Colina; J. Runt, J Mater Chem A 2014, 2 (30), 11742-11752, https://doi.org/10.1039/c4ta02165g.
  26. A highly permeable polyimide with enhanced selectivity for membrane gas separations. Y. Rogan; R. Malpass-Evans; M. Carta; M. Lee; J. C. Jansen; P. Bernardo; G. Clarizia; E. Tocci; K. Friess; M. Lanc; N. B. McKeown, J Mater Chem A 2014, 2 (14), 4874-4877, https://doi.org/10.1039/c4ta00564c.
  27. High density heterogenisation of molecular electrocatalysts in a rigid intrinsically microporous polymer. Y. Rong; R. Malpass-Evans; M. Carta; N. B. McKeown; G. A. Attard; F. Marken, Electrochem. Commun. 2014, 46, 26-29, https://doi.org/10.1016/j.elecom2014.06.005.
  28. Intrinsically Porous Polymer Protects Catalytic Gold Particles for Enzymeless Glucose Oxidation. Y. Rong; R. Malpass-Evans; M. Carta; N. B. McKeown; G. A. Attard; F. Marken, Electroanal 2014, 26 (5), 904-909, https://doi.org/10.1002/elan.201400085.
  29. Base-catalysed hydrolysis of PIM-1: amide versus carboxylate formation. B. Satilmis; P. M. Budd, Rsc Adv 2014, 4 (94), 52189-52198, https://doi.org/10.1039/c4ra09907a.
  30. Thermally Rearrangeable PIM-Polyimides for Gas Separation Membranes. H. Shamsipur; B. A. Dawood; P. M. Budd; P. Bernardo; G. Clarizia; J. C. Jansen, Macromolecules 2014, 47 (16), 5595-5606, https://doi.org/10.1021/ma5011183.
  31. Positronium formation and thermostimulated luminescence: A common nature and combined application to studies of organic systems. V. P. Shantarovich; V. W. Gustov; E. V. Belousova; A. V. Polyakova; V. G. Bekeshev; I. B. Kevdina, Russ. J. Phys. Chem. B 2014, 8 (4), 559-565, https://doi.org/10.1134/S1990793114040095.
  32. Local Rigidity as a Criterion of Gas Permeation of Polymer and Composition Materials; PAL and TSL Experiments. V. P. Shantarovich; V. W. Gustov; E. V. Belousova; A. V. Polyakova; V. G. Bekeshev; I. B. Kevdina; Y. P. Yampolskii; A. V. Pastukhov, Acta Phys. Pol., A 2014, 125 (3), 806-811,
  33. One-step synthesis of carbon nanosheets converted from a polycyclic compound and their direct use as transparent electrodes of ITO-free organic solar cells. S.-Y. Son; Y.-J. Noh; C. Bok; S. Lee; B. G. Kim; S.-I. Na; H.-I. Joh, Nanoscale 2014, 6 (2), 678-682, https://doi.org/10.1039/C3NR04828D.
  34. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Q. Song; S. Cao; R. H. Pritchard; B. Ghalei; S. A. Al-Muhtaseb; E. M. Terentjev; A. K. Cheetham; E. Sivaniah, Nature Communications 2014, 5, https://doi.org/10.1038/ncomms5813.
  35. Rational Design of Intrinsically Ultramicroporous Polyimides Containing Bridgehead-Substituted Triptycene for Highly Selective and Permeable Gas Separation Membranes. R. Swaidan; M. Al-Saeedi; B. Ghanem; E. Litwiller; I. Pinnau, Macromolecules 2014, 47 (15), 5104-5114, https://doi.org/10.1021/ma5009226.
  36. Role of Intrachain Rigidity in the Plasticization of Intrinsically Microporous Triptycene-Based Polyimide Membranes in Mixed-Gas CO2/CH4 Separations. R. Swaidan; B. Ghanem; M. Al-Saeedi; E. Litwiller; I. Pinnau, Macromolecules 2014, 47 (21), 7453-7462, https://doi.org/10.1021/ma501798v.
  37. Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1. R. Swaidan; B. S. Ghanem; E. Litwiller; I. Pinnau, J. Membr. Sci. 2014, 457, 95-102, https://doi.org/10.1016/j.memsci.2014.01.055.
  38. Triptycene-Based Organic Molecules of Intrinsic Microporosity. R. G. D. Taylor; M. Carta; C. G. Bezzu; J. Walker; K. J. Msayib; B. M. Kariuki; N. B. McKeown, Org. Lett. 2014, 16 (7), 1848-1851, https://doi.org/10.1021/ol500591q.
  39. Gas permeation in thin films of “high free-volume” glassy perfluoropolymers: Part I. Physical aging. R. R. Tiwari; Z. P. Smith; H. Q. Lin; B. D. Freeman; D. R. Paul, Polymer 2014, 55 (22), 5788-5800, https://doi.org/10.1016/j.polymer.2014.09.022.
  40. Molecular Modeling and Gas Permeation Properties of a Polymer of Intrinsic Microporosity Composed of Ethanoanthracene and Troger’s Base Units. E. Tocci; L. De Lorenzo; P. Bernardo; G. Clarizia; F. Bazzarelli; N. B. McKeown; M. Carta; R. Malpass-Evans; K. Friess; K. Pilnacek; M. Lanc; Y. P. Yampolskii; L. Strarannikova; V. Shantarovich; M. Mauri; J. C. Jansen, Macromolecules 2014, 47 (22), 7900-7916, https://doi.org/10.1021/ma501469m.
  41. G. Turnbull; I. Samuel, Polymer with Intrinsic Microporosity Used as Explosive Vapour Sensors. In Low Threshold Organic Semiconductor Lasers: Hybrid Optoelectronics and Applications as Explosive Sensors, 2014; pp 123-138.
  42. Centrotriindane- and triptindane-based polymers of intrinsic microporosity. J. Vile; M. Carta; C. G. Bezzu; B. M. Kariuki; N. B. McKeown, Polymer 2014, 55 (1), 326-329, https://doi.org/10.1016/j.polymer.2013.07.035.
  43. Mixed gas sorption in glassy polymeric membranes: II. CO2/CH4 mixtures in a polymer of intrinsic microporosity (PIM-1). O. Vopicka; M. G. De Angelis; N. Du; N. Li; M. D. Guiver; G. C. Sarti, J. Membr. Sci. 2014, 459, 264-276, https://doi.org/10.1016/j.memsci.2014.02.003.
  44. Analysis of gas sorption in glassy polymers with the GAB model: An alternative to the dual mode sorption model. O. Vopicka; K. Friess, J. Polym. Sci., Part B: Polym. Phys. 2014, 52 (22), 1490-1495, https://doi.org/10.1002/polb.23588.
  45. Study on preparation of soluble polymer with intrinsic microporosity (PIM-1). C. Wang; Q. Li; X.-f. Huang; G.-h. Wang, Henan Huagong 2014, 31 (7), 28-32,
  46. Microporous Polyimides with Rationally Designed Chain Structure Achieving High Performance for Gas Separation. Z. Wang; D. Wang; J. Jin, Macromolecules 2014, 47 (21), 7477-7483, https://doi.org/10.1021/ma5017506.
  47. Troger’s Base-Based Microporous Polyimide Membranes for High-Performance Gas Separation. Z. Wang; D. Wang; F. Zhang; J. Jin, Acs Macro Lett 2014, 3 (7), 597-601, https://doi.org/10.1021/mz500184z.
  48. Troger’s base-based copolymers with intrinsic microporosity for CO2 separation and effect of Troger’s base on separation performance. Z. G. Wang; X. Liu; D. Wang; J. Jin, Polymer Chemistry 2014, 5 (8), 2793-2800, https://doi.org/10.1039/c3py01608k.
  49. Advances in Structure Controls and Modifications of PIMs Membranes for Gas Separation. X. Wu; Q. Zhang; A. Zhu; Q. Liu, Progress in Chemistry 2014, 26 (7), 1214-1222, https://doi.org/10.7536/pc131208.
  50. Polymers of intrinsic microporosity in electrocatalysis: Novel pore rigidity effects and lamella palladium growth. F. Xia; M. Pan; S. Mu; R. Malpass-Evans; M. Carta; N. B. McKeown; G. A. Attard; A. Brew; D. J. Morgan; F. Marken, Electrochim. Acta 2014, 128, 3-9, https://doi.org/10.1016/j.electacta.2013.08.169.
  51. Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy. Y. Yang; Z. Pei; X. Zhang; L. Tao; Y. Wei; Y. Ji, Chem Sci 2014, 5 (9), 3486-3492, https://doi.org/10.1039/C4SC00543K.
  52. Molecular interaction, gas transport properties and plasticization behavior of cPIM-1/Torlon blend membranes. W. F. Yong; F. Y. Li; T. S. Chung; Y. W. Tong, J. Membr. Sci. 2014, 462, 119-130, https://doi.org/10.1016/j.memsci.2014.03.046.
  53. Mechanistic insight into highly efficient gas permeation and separation in a shape-persistent ladder polymer membrane. J. Zhou; X. Zhu; J. Hu; H. Liu; Y. Hu; J. Jiang, PCCP 2014, 16 (13), 6075-6083, https://doi.org/10.1039/c3cp55498h.
  54. Intrinsically Microporous Soluble Polyimides Incorporating Troger’s Base for Membrane Gas Separation. Y. Zhuang; J. G. Seong; Y. S. Do; H. J. Jo; Z. Cui; J. Lee; Y. M. Lee; M. D. Guiver, Macromolecules 2014, 47 (10), 3254-3262, https://doi.org/10.1021/ma5007073.

 

2015

  1. Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approachd. A. Ahmed; T. Hasell; R. Clowes; P. Myers; A. I. Cooper; H. Zhang, Chem. Commun. 2015, 51 (9), 1717-1720, https://doi.org/10.1039/c4cc08919g.
  2. Polymers of intrinsic microporosity as high temperature templates for the formation of nanofibrous oxides. H. Al Kutubi; L. Rassaei; W. Olthuis; G. W. Nelson; J. S. Foord; P. Holdway; M. Carta; R. Malpass-Evans; N. B. McKeown; S. C. Tsang; R. Castaing; T. R. Forder; M. D. Jones; D. He; F. Marken, Rsc Adv 2015, 5 (89), 73323-73326, https://doi.org/10.1039/c5ra15131g.
  3. Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides. F. Alghunaimi; B. Ghanem; N. Alaslai; R. Swaidan; E. Litwiller; I. Pinnau, J. Membr. Sci. 2015, 490, 321-327, https://doi.org/10.1016/j.memsci.2015.05.010.
  4. Application of PIM-1 for solvent swing adsorption and solvent recovery by nanofiltration. T. S. Anokhina; A. A. Yushkin; P. M. Budd; A. V. Volkov, Sep. Purif. Technol. 2015, 156, 683-690,
  5. Fabrication of ultrathin films containing the metal organic framework Fe-MIL-88B-NH2 by the Langmuir-Blodgett technique. J. Benito; M. Fenero; S. Sorribas; B. Zornoza; K. J. Msayib; N. B. McKeown; C. Tellez; J. Coronas; I. Gascon, Colloids and Surfaces a-Physicochemical and Engineering Aspects 2015, 470, 161-170, https://doi.org/10.1016/j.colsurfa.2015.01.082.
  6. High Temperature Mass Detection Using a Carbon Nanotube Bilayer Modified Quartz Crystal Microbalance as a GC Detector. M. Benz; L. Benz; S. V. Patel, Anal. Chem. 2015, 87 (5), 2779-2787, https://doi.org/10.1021/ac504101a.
  7. Interaction of a polymer of intrinsic microporosity (PIM-1) with penetrants. N. Chaukura; L. Maynard-Atem, American Journal of Applied Chemistry 2015, 3 (3), 139-146, https://doi.org/10.11648/j.ajac.20150303.17.
  8. In Silico Determination of Gas Permeabilities by Non-Equilibrium Molecular Dynamics: CO2 and He through PIM-1. H. Frentrup; K. E. Hart; C. M. Colina; E. A. Muller, Membranes 2015, 5 (1), 99-119, https://doi.org/10.3390/membranes5010099.
  9. PIM-1/graphene composite: A combined experimental and molecular simulation study. A. Gonciaruk; K. Althumayri; W. J. Harrison; P. M. Budd; F. R. Siperstein, Microporous Mesoporous Mater. 2015, 209, 126-134, https://doi.org/10.1016/j.micromeso.2014.07.007.
  10. An n-type, new emerging luminescent polybenzodioxane polymer for application in solution-processed green emitting OLEDs. B. K. Gupta; G. Kedawat; P. Kumar; M. A. Rafiee; P. Tyagi; R. Srivastava; P. M. Ajayan, Journal of Materials Chemistry C 2015, 3 (11), 2568-2574, https://doi.org/10.1039/c4tc02581d.
  11. Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance. L. Hao; K.-S. Liao; T.-S. Chung, J Mater Chem A 2015, 3 (33), 17273-17281, https://doi.org/10.1039/c5ta03776j.
  12. Intrinsically microporous polymer slows down fuel cell catalyst corrosion. D. He; Y. Rong; Z. Kou; S. Mu; T. Peng; R. Malpass-Evans; M. Carta; N. B. McKeown; F. Marken, Electrochem. Commun. 2015, 59, 72-76, https://doi.org/10.1016/j.elecom.2015.07.008.
  13. Microwave-assisted synthesis of mesoporous metal-organic framework NH2-MIL-101(Al). V. I. Isaeva; A. L. Tarasov; L. E. Starannikova; Y. P. Yampol’skii; A. Y. Alent’ev; L. M. Kustov, Russ. Chem. Bull. 2015, 64 (12), 2791-2795, https://doi.org/10.1007/s11172-015-1227-5.
  14. Effect of Nonsolvent Treatments on the Microstructure of PIM-1. M. L. Jue; C. S. McKay; B. A. McCool; M. G. Finn; R. P. Lively, Macromolecules 2015, 48 (16), 5780-5790, https://doi.org/10.1021/acs.macromol.5b01507.
  15. Free Volume and Gas Permeation in Anthracene Maleimide-Based Polymers of Intrinsic Microporosity. M. M. Khan; V. Filiz; T. Emmler; V. Abetz; T. Koschine; K. Raetzke; F. Faupel; W. Egger; L. Ravelli, Membranes 2015, 5 (2), 214-227, https://doi.org/10.3390/membranes5020214.
  16. Rigid and microporous polymers for gas separation membranes. S. Kim; Y. M. Lee, Prog. Polym. Sci. 2015, 43, 1-32, https://doi.org/10.1016/j.progpolymsci.2014.10.005.
  17. Electrocatalytic Carbohydrate Oxidation with 4-Benzoyloxy-TEMPO Heterogenised in a Polymer of Intrinsic Microporosity. A. Kolodziej; S. D. Ahn; M. Carta; R. Malpass-Evans; N. B. McKeown; R. S. L. Chapman; S. D. Bull; F. Marken, Electrochim. Acta 2015, 160, 195-201, https://doi.org/10.1016/j.electacta.2015.01.106.
  18. Correlation of Gas Permeation and Free Volume in New and used High Free Volume Thin Film Composite Membranes. T. Koschine; K. Raetzke; F. Faupel; M. M. Khan; T. Emmler; V. Filiz; V. Abetz; L. Ravelli; W. Egger, J Polym Sci Pol Phys 2015, 53 (3), 213-217, https://doi.org/10.1002/polb.23616.
  19. Gas-Separation Membranes Loaded with Porous Aromatic Frameworks that Improve with Age. C. H. Lau; K. Konstas; A. W. Thornton; A. C. Y. Liu; S. Mudie; D. F. Kennedy; S. C. Howard; A. J. Hill; M. R. Hill, Angew Chem Int Edit 2015, 54 (9), 2669-2673, https://doi.org/10.1002/anie.201410684.
  20. Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries. C. Li; A. L. Ward; S. E. Doris; T. A. Pascal; D. Prendergast; B. A. Helms, Nano Lett. 2015, 15 (9), 5724-5729, https://doi.org/10.1021/acs.nanolett.5b02078.
  21. Self-healing anti-corrosion coatings based on polymers of intrinsic microporosity for the protection of aluminum alloy. Z. Li; B. Qin; X. Zhang; K. Wang; Y. Wei; Y. Ji, Rsc Adv 2015, 5 (126), 104451-104457,
  22. Triptycene-Based Microporous Polymer Incorporating Thioamide Functionality: Preparation and Gas Storage Properties. L. Liu; Y. Xia; J. Zhang, J Polym Sci Pol Chem 2015, 53 (19), 2193-2197, https://doi.org/10.1002/pola.27709.
  23. Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation. S. Luo; Q. Liu; B. Zhang; J. R. Wiegand; B. D. Freeman; R. Guo, J. Membr. Sci. 2015, 480, 20-30, https://doi.org/10.1016/j.memsci.2015.01.043.
  24. Synthesis and Effect of Physical Aging on Gas Transport Properties of a Microporous Polyimide Derived from a Novel Spirobifluorene-Based Dianhydride. X. Ma; B. Ghanem; O. Salines; E. Litwiller; I. Pinnau, Acs Macro Lett 2015, 4 (2), 231-235, https://doi.org/10.1021/acsmacrolett.5b00009.
  25. Water desalination concept using an ionic rectifier based on a polymer of intrinsic microporosity (PIM). E. Madrid; P. Cottis; Y. Rong; A. T. Rogers; J. M. Stone; R. Malpass-Evans; M. Carta; N. B. McKeownd; F. Marken, J Mater Chem A 2015, 3 (31), 15849-15853, https://doi.org/10.1039/c5ta04092b.
  26. Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties. T. O. McDonald; R. Akhtar; C. H. Lau; T. Ratvijitvech; G. Cheng; R. Clowes; D. J. Adams; T. Hasell; A. I. Cooper, J Mater Chem A 2015, 3 (9), 4855-4864, https://doi.org/10.1039/c4ta06070a.
  27. Sub-micron Polymer-Zeolitic Imidazolate Framework Layered Hybrids via Controlled Chemical Transformation of Naked ZnO Nanocrystal Films. S. M. Meckler; C. Li; W. L. Queen; T. E. Williams; J. R. Long; R. Buonsanti; D. J. Milliron; B. A. Helms, Chem. Mater. 2015, 27 (22), 7673-7679, https://doi.org/10.1021/acs.chemmater.5b03219.
  28. UV-Visible and Plasmonic Nanospectroscopy of the CO2 Adsorption Energetics in a Microporous Polymer. F. A. A. Nugroho; C. Xu; N. Hedin; C. Langhammer, Anal. Chem. 2015, 87 (20), 10161-10165, https://doi.org/10.1021/acs.analchem.5b03108.
  29. Soluble, microporous ladder polymers formed by stepwise nucleophilic substitution of octafluorocyclopentene. K. Ranganathan; P. Anbanandam, Polymer Chemistry 2015, 6 (25), 4560-4564, https://doi.org/10.1039/c5py00359h.
  30. Intrinsically Microporous Polymer Retains Porosity in Vacuum Thermolysis to Electroactive Heterocarbon. Y. Rong; D. He; A. Sanchez-Fernandez; C. Evans; K. J. Edler; R. Malpass-Evans; M. Carta; N. B. McKeown; T. J. Clarke; S. H. Taylor; A. J. Wain; J. M. Mitchels; F. Marken, Langmuir 2015, 31 (44), 12300-12306, https://doi.org/10.1021/acs.langmuir.5b02654.
  31. Highly Permeable Benzotriptycene-Based Polymer of Intrinsic Microporosity. I. Rose; M. Carta; R. Malpass-Evans; M.-C. Ferrari; P. Bernardo; G. Clarizia; J. C. Jansen; N. B. McKeown, Acs Macro Lett 2015, 4 (9), 912-915, https://doi.org/10.1021/acsmacrolett.5b00439.
  32. Hydroxyalkylaminoalkylamide PIMs: Selective Adsorption by Ethanolamine- and Diethanolamine-Modified PIM-1. B. Satilmis; M. N. Alnajrani; P. M. Budd, Macromolecules 2015, 48 (16), 5663-5669, https://doi.org/10.1021/acs.macromol.5b01196.
  33. Competitive Permeation of Gas and Water Vapour in High Free Volume Polymeric Membranes. C. A. Scholes; J. Jin; G. W. Stevens; S. E. Kentish, J Polym Sci Pol Phys 2015, 53 (10), 719-728, https://doi.org/10.1002/polb.23689.
  34. Comparison of thin film composite and microporous membrane contactors for CO2 absorption into monoethanolamine. C. A. Scholes; S. E. Kentish; G. W. Stevens; D. de Montigny, Int. J. Greenhouse Gas Control 2015, 42, 66-74, https://doi.org/10.1016/j.ijggc.2015.07.032.
  35. Thin-film composite membrane contactors for desorption of CO2 from Monoethanolamine at elevated temperatures. C. A. Scholes; S. E. Kentish; G. W. Stevens; J. Jin; D. deMontigny, Sep. Purif. Technol. 2015, 156, 841-847,
  36. Effect of methanol treatment on gas sorption and transport behavior of intrinsically microporous polyimide membranes incorporating Troger’s base. J. G. Seong; Y. Zhuang; S. Kim; Y. S. Do; W. H. Lee; M. D. Guiver; Y. M. Lee, J. Membr. Sci. 2015, 480, 104-114, https://doi.org/10.1016/j.memsci.2015.01.022.
  37. Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes. S. J. D. Smith; B. P. Ladewig; A. J. Hill; C. H. Lau; M. R. Hill, Scientific Reports 2015, 5, https://doi.org/10.1038/srep07823.
  38. Effects of hydroxyl-functionalization and sub-T-g thermal annealing on high pressure pure- and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing. R. Swaidan; B. Ghanem; E. Litwiller; I. Pinnau, J. Membr. Sci. 2015, 475, 571-581, https://doi.org/10.1016/j.memsci.2014.10.046.
  39. Physical Aging, Plasticization and Their Effects on Gas Permeation in “Rigid” Polymers of Intrinsic Microporosity. R. Swaidan; B. Ghanem; E. Litwiller; I. Pinnau, Macromolecules 2015, 48 (18), 6553-6561, https://doi.org/10.1021/acs.macromol.5b01581.
  40. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations. R. Swaidan; B. Ghanem; I. Pinnau, Acs Macro Lett 2015, 4 (9), 947-951, https://doi.org/10.1021/acsmacrolett.5b00512.
  41. Pure- and mixed-gas propylene/propane permeation properties of spiro- and triptycene-based microporous polyimides. R. J. Swaidan; B. Ghanem; R. Swaidan; E. Litwiller; I. Pinnau, J. Membr. Sci. 2015, 492, 116-122, https://doi.org/10.1016/j.memsci.2015.05.044.
  42. Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous hydroxyl-functionalized polyimide membrane. R. J. Swaidan; X. Ma; E. Litwiller; I. Pinnau, J. Membr. Sci. 2015, 495, 235-241, https://doi.org/10.1016/j.memsci.2015.08.015.
  43. Preparation and characterization of spirobisindane linked porphyrins-based polyamide networks with intrinsic microporosity and catalyst of Knoevenagel condensation. J.-y. Wang; Q. Wu; Y. Jiang; C.-l. Zhang; X.-k. Liu, Gongneng Gaofenzi Xuebao 2015, 28 (1), 26-31,
  44. Chiral Polymers of Intrinsic Microporosity: Selective Membrane Permeation of Enantiomers. X. Weng; J. E. Baez; M. Khiterer; M. Y. Hoe; Z. Bao; K. J. Shea, Angew Chem Int Edit 2015, 54 (38), 11214-11218, https://doi.org/10.1002/anie.201504934.
  45. Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol. X. M. Wu; Q. G. Zhang; P. J. Lin; Y. Qu; A. M. Zhu; Q. L. Liu, J. Membr. Sci. 2015, 493, 147-155, https://doi.org/10.1016/j.memsci.2015.05.077.
  46. A high-performance hydroxyl-functionalized polymer of intrinsic microporosity for an environmentally attractive membrane-based approach to decontamination of sour natural gas. S. Yi; X. Ma; I. Pinnau; W. J. Koros, J Mater Chem A 2015, 3 (45), 22794-22806, https://doi.org/10.1039/c5ta05928c.
  47. Miscible blends of carboxylated polymers of intrinsic microporosity (cPIM-1) and Matrimid. W. F. Yong; T.-S. Chung, Polymer 2015, 59, 290-297, https://doi.org/10.1016/j.polymer.2015.01.013.
  48. Suppression of aging and plasticization in highly permeable polymers. W. F. Yong; K. H. A. Kwek; K.-S. Liao; T.-S. Chung, Polymer 2015, 77, 377-386, https://doi.org/10.1016/j.polymer.2015.09.075.
  49. Study of glassy polymers fractional accessible volume (FAV) by extended method of hydrostatic weighing: Effect of porous structure on liquid transport. A. Yushkin; A. Grekhov; S. Matson; M. Bermeshev; V. Khotimsky; E. Finkelstein; P. M. Budd; V. Volkov; T. J. H. Vlugt; A. Volkov, Reactive & Functional Polymers 2015, 86, 269-281, https://doi.org/10.1016/j.reactfunctpolym.2014.06.010.
  50. Selective removal of butanol from aqueous solution by pervaporation with a PIM-1 membrane and membrane aging. M. Zak; M. Klepic; L. C. Stastna; Z. Sedlakova; H. Vychodilova; S. Hovorka; K. Friess; A. Randova; L. Brozova; J. C. Jansen; M. R. Khdhayyer; P. M. Budd; P. Izak, Sep. Purif. Technol. 2015, 151, 108-114, https://doi.org/10.1016/j.seppur.2015.07.041.
  51. Electrospun Microfibrous Membranes Based on PIM-1/POSS with High Oil Wettability for Separation of Oil-Water Mixtures and Cleanup of Oil Soluble Contaminants. C. Zhang; P. Li; B. Cao, Industrial & Engineering Chemistry Research 2015, 54 (35), 8772-8781, https://doi.org/10.1021/acs.iecr.5b02321.
  52. Synthesis of perfectly alternating copolymers for polymers of intrinsic microporosity. J. Zhang; J. Jin; R. Cooney; Q. Fu; G. G. Qiao; S. Thomas; T. C. Merkel, Polymer Chemistry 2015, 6 (28), 5003-5008, https://doi.org/10.1039/c5py00570a.
  53. Fluoride-mediated polycondensation for the synthesis of polymers of intrinsic microporosity. J. Zhang; J. Jin; R. Cooney; S. Zhang, Polymer 2015, 76, 168-172, https://doi.org/10.1016/j.polymer.2015.08.066.
  54. Synthesis of polymers of intrinsic microporosity using an AB-type monomer. J. Zhang; J. Jin; R. Cooney; S. Zhang, Polymer 2015, 57, 45-50, https://doi.org/10.1016/j.polymer.2014.12.010.
  55. Advancing polymers of intrinsic microporosity by mechanochemistry. P. Zhang; X. Jiang; S. Wan; S. Dai, J Mater Chem A 2015, 3 (13), 6739-6741, https://doi.org/10.1039/c4ta07196d.

 

2016

  1. Polymer of Intrinsic Microporosity Induces Host-Guest Substrate Selectivity in Heterogeneous 4-Benzoyloxy-TEMPO-Catalysed Alcohol Oxidations. S. D. Ahn; A. Kolodziej; R. Malpass-Evans; M. Carta; N. B. McKeown; S. D. Bull; A. Buchard; F. Marken, Electrocatalysis-Us 2016, 7 (1), 70-78, https://doi.org/10.1007/s12678-015-0284-8.
  2. Pure- and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation. N. Alaslai; B. Ghanem; F. Alghunaimi; E. Litwiller; I. Pinnau, J. Membr. Sci. 2016, 505, 100-107, https://doi.org/10.1016/j.memsci.2015.12.053.
  3. High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation. N. Alaslai; B. Ghanem; F. Alghunaimi; I. Pinnau, Polymer 2016, 91, 128-135, https://doi.org/10.1016/j.polymer.2016.03.063.
  4. Triptycene dimethyl-bridgehead dianhydride-based intrinsically microporous hydroxyl-functionalized polyimide for natural gas upgrading. F. Alghunaimi; B. Ghanem; N. Alaslai; M. Mukaddam; I. Pinnau, J. Membr. Sci. 2016, 520, 240-246, https://doi.org/10.1016/j.memsci.2016.07.058.
  5. The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1. K. Althumayri; W. J. Harrison; Y. Y. Shin; J. M. Gardiner; C. Casiraghi; P. M. Budd; P. Bernardo; G. Clarizia; J. C. Jansen, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 2016, 374 (2060), https://doi.org/10.1098/rsta.2015.0031.
  6. Light-switchable polymers of intrinsic microporosity. D. Becker; N. Konnertz; M. Böhning; J. Schmidt; A. Thomas, Chem. Mater. 2016, 28 (23), 8523-8529, https://doi.org/10.1021/acs.chemmater.6b02619.
  7. Toward an Understanding of the Microstructure and Interfacial Properties of PIMs/ZIF-8 Mixed Matrix Membranes. M. Benzaqui; R. Semino; N. Menguy; F. Carn; T. Kundu; J.-M. Guigner; N. B. McKeown; K. J. Msayib; M. Carta; R. Malpass-Evans, Acs Appl Mater Inter 2016, 8 (40), 27311-27321, https://doi.org/10.1021/acsami.6b08954.
  8. Ultra‐High Proton/Vanadium Selectivity for Hydrophobic Polymer Membranes with Intrinsic Nanopores for Redox Flow Battery. I. S. Chae; T. Luo; G. H. Moon; W. Ogieglo; Y. S. Kang; M. Wessling, Advanced Energy Materials 2016, 6 (16), 1600517, https://doi.org/10.1002/aenm.201600517.
  9. Evaluation of a passive optical based end of service life indicator (ESLI) for organic vapor respirator cartridges. M. Checky; K. Frankel; D. Goddard; E. Johnson; J. C. Thomas; M. Zelinsky; C. Javner, Journal of Occupational and Environmental Hygiene 2016, 13 (2), 112-120, https://doi.org/10.1080/15459624.2015.1091956.
  10. Structural characteristics and transport behavior of triptycene-based PIMs membranes: A combination study using ab initio calculation and molecular simulations. Y. R. Chen; L. H. Chen; K. S. Chang; T. H. Chen; Y. F. Lin; K. L. Tung, J. Membr. Sci. 2016, 514, 114-124, https://doi.org/10.1016/j.memsci.2016.04.063.
  11. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes. E. Chernova; D. Petukhov; O. Boytsova; A. Alentiev; P. Budd; Y. Yampolskii; A. Eliseev, Scientific Reports 2016, 6, No. 31183, https://doi.org/10.1038/srep31183.
  12. Understanding and controlling the chemical evolution and polysulfide-blocking ability of lithium–sulfur battery membranes cast from polymers of intrinsic microporosity. S. E. Doris; A. L. Ward; P. D. Frischmann; L. Li; B. A. Helms, J Mater Chem A 2016, 4 (43), 16946-16952, https://doi.org/ 10.1039/C6TA06401A
  13. Integration of multi-stage membrane carbon capture processes to coal-fired power plants using highly permeable polymers. M. C. Ferrari; D. Bocciardo; S. Brandani, Green Energy & Environment 2016, 1, 211,
  14. Novel 6FDA-based polyimides derived from sterically hindered Troger’s base diamines: Synthesis and gas permeation properties. B. Ghanem; N. Alaslai; X. H. Miao; I. Pinnau, Polymer 2016, 96, 13-19, https://doi.org/10.1016/j.polymer.2016.04.068.
  15. New phenazine-containing ladder polymer of intrinsic microporosity from a spirobisindane-based AB-type monomer. B. Ghanem; F. Alghunaimi; N. Alaslai; X. Ma; I. Pinnau, Rsc Adv 2016, 6 (83), 79625-79630, https://doi.org/10.1039/C6RA16393A.
  16. Synthesis and characterization of novel triptycene dianhydrides and polyimides of intrinsic microporosity based on 3, 3ʹ-dimethylnaphthidine. B. Ghanem; F. Alghunaimi; X. Ma; N. Alaslai; I. Pinnau, Polymer 2016, 101, 225-232, https://doi.org/10.1016/j.polymer.2016.08.075.
  17. Interplay of inlet temperature and humidity on energy penalty for CO 2 post-combustion capture: Rigorous analysis and simulation of a single stage gas permeation process. L. Giordano; D. Roizard; R. Bounaceur; E. Favre, Energy 2016, 116, 517-525,
  18. Molecularly Rigid Microporous Polyamine Captures and Stabilizes Conducting Platinum Nanoparticle Networks. D. He; D. S. He; J. Yang; Z.-X. Low; R. Malpass-Evans; M. Carta; N. B. McKeown; F. Marken, Acs Appl Mater Inter 2016, 8 (34), 22425-22430, https://doi.org/10.1021/acsami.6b04144.
  19. Fuel cell anode catalyst performance can be stabilized with a molecularly rigid film of polymers of intrinsic microporosity (PIM). D. P. He; Y. Y. Rong; M. Carta; R. Malpass-Evans; N. B. McKeown; F. Marken, Rsc Adv 2016, 6 (11), 9315-9319, https://doi.org/10.1039/c5ra25320a.
  20. An anion-conductive microporous membrane composed of a rigid ladder polymer with a spirobiindane backbone. F. Ishiwari; T. Sato; H. Yamazaki; J. N. Kondo; S. Miyanishi; T. Yamaguchi; T. Fukushima, J Mater Chem A 2016, 4 (45), 17655-17659, https://doi.org/10.1039/C6TA07576B
  21. Polymer nanofilms with enhanced microporosity by interfacial polymerization. M. F. Jimenez-Solomon; Q. L. Song; K. E. Jelfs; M. Munoz-Ibanez; A. G. Livingston, Nat Mater 2016, 15 (7), 760-+, https://doi.org/10.1038/nmat4638.
  22. A Carbonaceous Membrane based on a Polymer of Intrinsic Microporosity (PIM-1) for Water Treatment. H. J. Kim; D.-G. Kim; K. Lee; Y. Baek; Y. Yoo; Y. S. Kim; B. G. Kim; J.-C. Lee, Scientific Reports 2016, 6, https://doi.org/10.1038/srep36078.
  23. Molecular Mobility of the High Performance Membrane Polymer PIM-1 as Investigated by Dielectric Spectroscopy. N. Konnertz; Y. Ding; W. J. Harrison; P. M. Budd; A. Schonhals; M. Bohning, Acs Macro Lett 2016, 5 (4), 528-532, https://doi.org/10.1021/acsmacrolett.6b00209.
  24. Effect of humidity and flue gas impurities on CO2 permeation of a polymer of intrinsic microporosity for post-combustion capture. E. Lasseuguette; M. Carta; S. Brandani; M. C. Ferrari, International Journal of Greenhouse Gas Control 2016, 50, 93-99, https://doi.org/10.1016/j.ijggc.2016.04.023.
  25. Development of microporous electrospun PIM-1 fibres. E. Lasseuguette; M.-C. Ferrari, Mater. Lett. 2016, 177, 116-119, https://doi.org/10.1016/j.matlet.2016.04.181.
  26. Synthesis and characterization of polyethersulfone with intrinsic microporosity. K. Lee; J. W. Jeon; B. M. Maeng; K. M. Huh; J. C. Won; Y. Yoo; Y. S. Kim; B. G. Kim, Rsc Adv 2016, 6 (74), 70320-70325, https://doi.org/10.1039/C6RA13034H
  27. Enhancing the Gas Permeability of Troger’s Base Derived Polyimides of Intrinsic Microporosity. M. Lee; C. G. Bezzu; M. Carta; P. Bernardo; G. Clarizia; J. C. Jansen; N. B. McKeown, Macromolecules 2016, 49 (11), 4147-4154, https://doi.org/10.1021/acs.macromol.6b00351.
  28. Metal ion modified PIM-1 and its application for propylene/propane separation. K. S. Liao; J. Y. Lai; T. S. Chung, J. Membr. Sci. 2016, 515, 36-44, https://doi.org/10.1016/j.memsci.2016.05.032.
  29. C. Liu; D. W. Greer; B. W. O’Leary, Advanced Materials and Membranes for Gas Separations: The UOP Approach. In Nanotechnology: Delivering on the Promise, American Chemical Society:: Washington, 2016; Vol. 2, pp 119-135.
  1. High-Performance Polymers for Membrane CO2/N2 Separation. J. Liu; X. Hou; H. B. Park; H. Lin, Chem-Eur J 2016, 22 (45), 15980-15990, https://doi.org/10.1002/chem.201603002.
  2. Finely Tuning the Free Volume Architecture in Iptycene-Containing Polyimides for Highly Selective and Fast Hydrogen Transport. S. J. Luo; J. R. Wiegand; B. Kazanowska; C. M. Doherty; K. Konstas; A. J. Hill; R. L. Guo, Macromolecules 2016, 49 (9), 3395-3405, https://doi.org/10.1021/acs.macromol.6b00485.
  3. Fabrication of mixed-matrix membrane containing metal organic framework composite with task specific ionic liquid for efficient CO2 separation. J. Ma; Y. P. Ying; X. Y. Guo; H. L. Huang; D. H. Liu; C. L. Zhong, J Mater Chem A 2016, 4 (19), 7281-7288, https://doi.org/10.1039/c6ta02611g.
  4. Bifunctionalized Intrinsically Microporous Polyimides with Simultaneously Enhanced Gas Permeability and Selectivity. X. Ma; M. Mukaddam; I. Pinnau, Macromol. Rapid Commun. 2016, 37 (11), 900-904, https://doi.org/10.1002/marc.201600023.
  5. A novel intrinsically microporous ladder polymer and copolymers derived from 1, 1′, 2, 2′-tetrahydroxy-tetraphenylethylene for membrane-based gas separation. X. Ma; I. Pinnau, Polymer Chemistry 2016, 7 (6), 1244-1248, https://doi.org/10.1039/C5PY01796C
  6. Reagentless Electrochemiluminescence from a Nanoparticulate Polymer of Intrinsic Microporosity (PIM‐1) Immobilized onto Tin‐Doped Indium Oxide. E. Madrid; D. He; J. Yang; C. F. Hogan; B. Stringer; K. J. Msayib; N. B. McKeown; P. R. Raithby; F. Marken, ChemElectroChem 2016, 3 (12), 2160-2164, https://doi.org/10.1002/celc.201600419.
  7. Contorted separation. N. B. McKeown, Nat Mater 2016, 15 (7), 706-707, https://doi.org/10.1038/nmat4680.
  8. PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers. T. Mitra; R. S. Bhavsar; D. J. Adams; P. M. Budd; A. I. Cooper, Chem. Commun. 2016, 52 (32), 5581-5584, https://doi.org/10.1039/c6cc00261g.
  9. Crystal structure of 5,7,12,14-tetrahydro-5,14:7,12-bis([1,2]benzeno)pentacene-6,13-dione. M. Nozari; J. P. Jasinski; M. Kaur; A. W. Addison; A. Arabi Shamsabadi; M. Soroush, Acta Crystallogr., Sect. E: Crystallogr. Commun. 2016, 72 (12), 1734-1738, https://doi.org/10.1107/S2056989016017461.
  10. 5,7,12,14-Tetrahydro-5,14:7,12-bis([1,2]benzeno)pentacene-6,13-diol dimethylformamide disolvate. M. Nozari; M. Kaur; J. P. Jasinski; A. W. Addison; A. Arabi Shamsabadi; M. Soroush, IUCrData 2016, Ahead of Print, https://doi.org/10.1107/S2414314616011305.
  11. How Much Do Ultrathin Polymers with Intrinsic Microporosity Swell in Liquids? W. Ogieglo; B. Ghanem; X. Ma; I. Pinnau; M. Wessling, The Journal of Physical Chemistry B 2016, 120 (39), 10403-10410, https://doi.org/10.1021/acs.jpcb.6b06807.
  12. Octafluorocyclopentene–A versatile tetrafunctional monomer for making tunable, high surface area, microporous ladder polymers. A. Parthiban; K. Ranganathan, J. Fluorine Chem. 2016, 191, 70-76, https://doi.org/10.1016/j.jfluchem.2016.09.013.
  13. Aging of polymers of intrinsic microporosity tracked by methanol vapour permeation. K. Pilnáček; O. Vopička; M. Lanč; M. Dendisová; M. Zgažar; P. M. Budd; M. Carta; R. Malpass-Evans; N. B. McKeown; K. Friess, J. Membr. Sci. 2016, 520, 895-906, https://doi.org/10.1016/j.memsci.2016.08.054.
  14. Dimethyl sulfoxide as a green solvent for successful precipitative polyheterocyclization based on nucleophilic aromatic substitution, resulting in high molecular weight PIM-1. I. I. Ponomarev; I. V. Blagodatskikh; A. V. Muranov; Y. A. Volkova; D. Y. Razorenov; P. I. I.; K. M. Skupov, Mendeleev Commun. 2016, 26, 362–364, https://doi.org/10.1016/j.mencom.2016.07.033.
  15. Review of polymers of intrinsic microporosity for hydrogen storage applications. D. Ramimoghadam; E. M. Gray; C. Webb, Int. J. Hydrogen Energy 2016, 41 (38), 16944-16965, https://doi.org/10.1016/j.ijhydene.2016.07.134.
  16. Progress of microporous polyimide membranes for gas separation. H.-t. Ren; Z.-g. Wang; F. Zhang; J. Jin, Gongneng Gaofenzi Xuebao 2016, 29 (4), 377-387, https://doi.org/10.14133/j.cnki.1008-9357.2016.04.002.
  17. Polymers of intrinsic microporosity in electrochemistry: Anion uptake and transport effects in thin film electrodes and in free-standing ionic diode membranes. Y. Rong; A. Kolodziej; E. Madrid; M. Carta; R. Malpass-Evans; N. B. McKeown; F. Marken, J. Electroanal. Chem. 2016, 779, 241-249, https://doi.org/10.1016/j.jelechem.2015.11.038.
  18. pH-induced reversal of ionic diode polarity in 300nm thin membranes based on a polymer of intrinsic microporosity. Y. Rong; Q. Song; K. Mathwig; E. Madrid; D. He; R. G. Niemann; P. J. Cameron; S. E. Dale; S. Bending; M. Carta, Electrochem. Commun. 2016, 69, 41-45, https://doi.org/doi.org/10.1016/j.elecom.2016.05.019.
  19. Development of high performance carboxylated PIM-1/P84 blend membranes for pervaporation dehydration of isopropanol and CO 2/CH 4 separation. P. Salehian; W. F. Yong; T.-S. Chung, J. Membr. Sci. 2016, 518, 110-119, https://doi.org/doi.org/10.1016/j.memsci.2016.06.027.
  20. High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide. O. Salinas; X. Ma; E. Litwiller; I. Pinnau, J. Membr. Sci. 2016, 500, 115-123, https://doi.org/doi.org/10.1016/j.memsci.2015.11.013.
  21. Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1). O. Salinas; X. H. Ma; E. Litwiller; I. Pinnau, J. Membr. Sci. 2016, 504, 133-140, https://doi.org/10.1016/j.memsci.2015.12.052.
  22. Hydrocarbon solubility, permeability, and competitive sorption effects in polymer of intrinsic microporosity (PIM-1) membranes. C. A. Scholes; J. Y. Jin; G. W. Stevens; S. E. Kentish, J Polym Sci Pol Phys 2016, 54 (3), 397-404, https://doi.org/10.1002/polb.23900.
  23. Separation of carbon dioxide from flue gas by mixed matrix membranes using dual phase microporous polymeric constituents. A. K. Sekizkardes; V. A. Kusuma; G. Dahe; E. A. Roth; L. J. Hill; A. Marti; M. Macala; S. R. Venna; D. Hopkinson, Chem. Commun. 2016, 52 (79), 11768-11771, https://doi.org/10.1039/C6CC04811K.
  24. Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity. Y. Y. Shin; E. Prestat; K. G. Zhou; P. Gorgojo; K. Althumayri; W. Harrison; P. M. Budd; S. J. Haigh; C. Casiraghi, Carbon 2016, 102, 357-366, https://doi.org/10.1016/j.carbon.2016.02.037.
  25. Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes. Q. L. Song; S. Cao; R. H. Pritchard; H. Qiblawey; E. M. Terentjev; A. K. Cheetham; E. Sivaniah, J Mater Chem A 2016, 4 (1), 270-279, https://doi.org/10.1039/c5ta09060a.
  26. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation. R. J. Swaidan; X. Ma; I. Pinnau, J. Membr. Sci. 2016, 520, 983-989, https://doi.org/doi.org/10.1016/j.memsci.2016.08.057.
  27. The Synthesis of Organic Molecules of Intrinsic Microporosity Designed to Frustrate Efficient Molecular Packing. R. G. D. Taylor; C. G. Bezzu; M. Carta; K. J. Msayib; J. Walker; R. Short; B. M. Kariuki; N. B. McKeown, Chem-Eur J 2016, 22 (7), 2466-2472, https://doi.org/10.1002/chem.201504212.
  28. Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity. Z. Z. Tian; S. F. Wang; Y. T. Wang; X. R. Ma; K. T. Cao; D. D. Peng; X. Y. Wu; H. Wu; Z. Y. Jiang, J. Membr. Sci. 2016, 514, 15-24, https://doi.org/10.1016/j.memsci.2016.04.019.
  29. Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes. N. Tien-Binh; H. Vinh-Thang; X. Y. Chen; D. Rodrigue; S. Kaliaguine, J. Membr. Sci. 2016, 520, 941-950, https://doi.org/doi.org/10.1016/j.memsci.2016.08.045.
  30. Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance. Z. G. Wang; D. Wang; S. X. Zhang; L. Hu; J. Jin, Adv. Mater. 2016, 28 (17), 3399-3405, https://doi.org/10.1002/adma.201504982.
  31. Pervaporation Purification of Ethylene Glycol Using the Highly Permeable PIM-1 Membrane. X. M. Wu; H. Guo; F. Soyekwo; Q. G. Zhang; C. X. Lin; Q. L. Liu; A. M. Zhu, J. Chem. Eng. Data 2016, 61 (1), 579-586, https://doi.org/10.1021/acs.jced.5b00731.
  32. Pervaporation removal of volatile organic compounds from aqueous solutions using the highly permeable PIM-1 membrane. X. M. Wu; Q. G. Zhang; F. Soyekwo; Q. L. Liu; A. M. Zhu, AlChE J. 2016, 62 (3), 842-851, https://doi.org/10.1002/aic.15077.
  33. Facile conversion of nitrile to amide on polymers of intrinsic microporosity (PIM-1). P. Yanaranop; B. Santoso; R. Etzion; J. Jin, Polymer 2016, 98, 244-251, https://doi.org/doi.org/10.1016/j.polymer.2016.06.041.
  34. Highly Conductive Anion-Exchange Membranes from Microporous Trogers Base Polymers. Z. Yang; R. Guo; R. Malpass-Evans; M. Carta; N. B. McKeown; M. D. Guiver; L. Wu; T. Xu, Angew Chem Int Edit 2016, 55, 11499–11502 https://doi.org/DOI: 10.1002/anie.201605916.
  35. Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation. W. F. Yong; Z. K. Lee; T. S. Chung; M. Weber; C. Staudt; C. Maletzko, Chemsuschem 2016, 9 (15), 1953-1962, https://doi.org/DOI: 10.1002/cssc.201600354.
  36. Selective adsorption and separation of organic dyes in aqueous solutions by hydrolyzed PIM-1 microfibers. C. Zhang; P. Li; W. Huang; B. Cao, Chem. Eng. Res. Des. 2016, 109, 76-85, https://doi.org/doi.org/10.1016/j.cherd.2016.01.006.
  37. Electrospun polymer of intrinsic microporosity fibers and their use in the adsorption of contaminants from a nonaqueous system. C. L. Zhang; P. Li; B. Cao, J. Appl. Polym. Sci. 2016, 133 (22), https://doi.org/10.1002/app.43475.
  38. Fabrication of Superhydrophobic-Superoleophilic Fabrics by an Etching and Dip-Coating Two-Step Method for Oil-Water Separation. C. L. Zhang; P. Li; B. Cao, Industrial & Engineering Chemistry Research 2016, 55 (17), 5030-5035, https://doi.org/10.1021/acs.iecr.6b00206.
  39. The enhancement of chain rigidity and gas transport performance of polymers of intrinsic microporosity via intramolecular locking of the spiro-carbon. J. Zhang; H. Kang; J. Martin; S. H. Zhang; S. Thomas; T. C. Merkel; J. Y. Jin, Chem. Commun. 2016, 52 (39), 6553-6556, https://doi.org/10.1039/c6cc02308h.
  40. High performance post-modified polymers of intrinsic microporosity (PIM-1) membranes based on multivalent metal ions for gas separation. H. Y. Zhao; Q. Xie; X. L. Ding; J. M. Chen; M. M. Hua; X. Y. Tan; Y. Z. Zhang, J. Membr. Sci. 2016, 514, 305-312, https://doi.org/10.1016/j.memsci.2016.05.013.
  41. High-strength, soluble polyimide membranes incorporating Troger’s Base for gas separation. Y. Zhuang; J. G. Seong; Y. S. Do; W. H. Lee; M. J. Lee; M. D. Guiver; Y. M. Lee, J. Membr. Sci. 2016, 504, 55-65, https://doi.org/10.1016/j.memsci.2015.12.057.
  42. Soluble, microporous, Troger’s Base copolyimides with tunable membrane performance for gas separation. Y. B. Zhuang; J. G. Seong; Y. S. Do; W. H. Lee; M. J. Lee; Z. Cui; A. E. Lozano; M. D. Guiver; Y. M. Lee, Chem. Commun. 2016, 52 (19), 3817-3820, https://doi.org/10.1039/c5cc09783e.

 

2017

  1. Synthesis and characterization of a microporous 6FDA-polyimide made from a novel carbocyclic pseudo Troger’s base diamine: Effect of bicyclic bridge on gas transport properties. M. A. Abdulhamid; X. H. Ma; X. H. Miao; I. Pinnau, Polymer 2017, 130, 182-190, https://doi.org/10.1016/j.polymer.2017.10.017.
  2. Synthesis and characterization of metalorganic polymers of intrinsic microporosity based on iron(II) clathrochelate. B. Alameddine; S. Shetty; N. Baig; S. Al-Mousawi; F. Al-Sagheer, Polymer 2017, 122, 200-207, https://doi.org/10.1016/j.polymer.2017.06.048.
  3. Synthesis and Characterization of a Novel Microporous Dihydroxyl-Functionalized Triptycene-Diamine-Based Polyimide for Natural Gas Membrane Separation. N. Alaslai; X. H. Ma; B. Ghanem; Y. G. Wang; F. Alghunaimi; I. Pinnau, Macromol. Rapid Commun. 2017, 38 (18), https://doi.org/10.1002/marc.201700303.
  4. Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers. M. Alberto; J. M. Luque-Alled; L. Gao; M. Iliut; E. Prestat; L. Newman; S. J. Haigh; A. Vijayaraghavan; P. M. Budd; P. Gorgojo, J. Membr. Sci. 2017, 526, 437-449, https://doi.org/10.1016/j.memsci.2016.12.061.
  5. Synthesis and gas permeation properties of a novel thermally-rearranged polybenzoxazole made from an intrinsically microporous hydroxyl-functionalized triptycene-based polyimide precursor. F. Alghunaimi; B. Ghanem; Y. G. Wang; O. Salinas; N. Alaslai; I. Pinnau, Polymer 2017, 121, 9-16, https://doi.org/10.1016/j.polymer.2017.06.006.
  6. A porphyrin-based microporous network polymer that acts as an efficient catalyst for cyclooctene and cyclohexane oxidation under mild conditions. A. R. Antonangelo; C. Grazia Bezzu; S. S. Mughal; T. Malewschik; N. B. McKeown; S. Nakagaki, Catal. Commun. 2017, 99, 100-104, https://doi.org/10.1016/j.catcom.2017.05.024.
  7. Membranes of Polymers of Intrinsic Microporosity (PIM-1) Modified by Poly(ethylene glycol). G. Bengtson; S. Neumann; V. Filiz, Membranes 2017, 7 (2), https://doi.org/10.3390/membranes7020028.
  8. Ultrathin Composite Polymeric Membranes for CO2/N-2 Separation with Minimum Thickness and High CO2 Permeance. J. Benito; J. Sanchez-Lainez; B. Zornoza; S. Martin; M. Carta; R. Malpass-Evans; C. Tellez; N. B. McKeown; J. Coronas; I. Gascon, Chemsuschem 2017, 10 (20), 4014-4017, https://doi.org/10.1002/cssc.201701139.
  9. Effect of physical aging on the gas transport and sorption in PIM-1 membranes. P. Bernardo; E. Bazzarelli; F. Tasselli; G. Clarizia; C. R. Mason; L. Maynard-Atem; P. M. Budd; M. Lanc; K. Pilnacek; O. Vopicka; K. Friess; D. Fritsch; Y. P. Yampolskii; V. Shantarovich; J. C. Jansen, Polymer 2017, 113, 283-294, https://doi.org/10.1016/j.polymer.2016.10.040.
  10. Gas separation properties of Troeger’s base-bridged polyamides. S. Bisoi; A. K. Mandal; A. Singh; S. Banerjee, E-Polymers 2017, 17 (4), 283-293, https://doi.org/10.1515/epoly-2016-0291.
  11. A rapidly-reversible absorptive and emissive vapochromic Pt(II) pincer-based chemical sensor. M. J. Bryant; J. M. Skelton; L. E. Hatcher; C. Stubbs; E. Madrid; A. R. Pallipurath; L. H. Thomas; C. H. Woodall; J. Christensen; S. Fuertes; T. P. Robinson; C. M. Beavers; S. J. Teat; M. R. Warren; F. Pradaux-Caggiano; A. Walsh; F. Marken; D. R. Carbery; S. C. Parker; N. B. McKeown; R. Malpass-Evans; M. Carta; P. R. Raithby, Nature Communications 2017, 8, https://doi.org/10.1038/s41467-017-01941-2.
  12. Polymers of Intrinsic Microporosity derived from a carbocyclic analogue of Troger’s base. M. Carta; C. G. Bezzu; J. Vile; B. M. Kariuki; N. B. McKeown, Polymer 2017, 126, 324-329, https://doi.org/10.1016/j.polymer.2017.03.037.
  13. Mixed Matrix Membranes Based on PIMs for Gas Permeation: Principles, Synthesis, and Current Status. R. Castro-Munoz; V. Fila; C. T. Dung, Chem. Eng. Commun. 2017, 204 (3), 295-309, https://doi.org/10.1080/00986445.2016.1273832.
  14. Trends and challenges for microporous polymers. N. Chaoui; M. Trunk; R. Dawson; J. Schmidt; A. Thomas, Chem. Soc. Rev. 2017, 46 (11), 3302-3321, https://doi.org/10.1039/C7CS00071E.
  15. Toward improved hydrophilicity of polymers of intrinsic microporosity for pervaporation dehydration of ethylene glycol. M. M. Chen; X. M. Wu; F. Soyekwo; Q. G. Zhang; R. X. Lv; A. M. Zhu; Q. L. Liu, Sep. Purif. Technol. 2017, 174, 166-173, https://doi.org/10.1016/j.seppur.2016.10.024.
  16. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. Y. D. Cheng; X. R. Wang; C. K. Jia; Y. X. Wang; L. Z. Zhai; Q. Wang; D. Zhao, J. Membr. Sci. 2017, 539, 213-223, https://doi.org/10.1016/j.memsci.2017.06.011.
  17. Porous Molecular Solids and Liquids. A. I. Cooper, Acs Central Sci 2017, 3 (6), 544-553, https://doi.org/10.1021/acscentsci.7b00146.
  18. Porous Organic Materials: Strategic Design and Structure-Function Correlation. S. Das; P. Heasman; T. Ben; S. L. Qiu, Chem. Rev. 2017, 117 (3), 1515-1563, https://doi.org/10.1021/acs.chemrev.6b00439.
  19. Microporous polymeric membranes inspired by adsorbent for gas separation. G. X. Dong; Y. M. Lee, J Mater Chem A 2017, 5 (26), 13294-13319, https://doi.org/10.1039/c7ta04015f.
  20. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries. S. E. Doris; A. L. Ward; A. Baskin; P. D. Frischmann; N. Gavvalapalli; E. Chenard; C. S. Sevov; D. Prendergast; J. S. Moore; B. A. Helms, Angew Chem Int Edit 2017, 56 (6), 1595-1599, https://doi.org/10.1002/anie.201610582.
  21. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation. A. Fuoco; M. R. Khdhayyer; M. P. Attfield; E. Esposito; J. C. Jansen; P. M. Budd, Membranes 2017, 7 (1), https://doi.org/10.3390/membranes7010007.
  22. 50Th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. M. Galizia; W. S. Chi; Z. P. Smith; T. C. Merkel; R. W. Baker; B. D. Freeman, Macromolecules 2017, 50 (20), 7809-7843, https://doi.org/10.1021/acs.macromol.7b01718.
  23. High-flux PIM-1/PVDF thin film composite membranes for 1-butanol/water pervaporation. L. Gao; M. Alberto; P. Gorgojo; G. Szekely; P. M. Budd, J. Membr. Sci. 2017, 529, 207-214, https://doi.org/10.1016/j.memsci.2017.02.008.
  24. Improved gas selectivity of polyetherimide membrane by the incorporation of PIM polyimide phase. M. G. Garcia; J. Marchese; N. A. Ochoa, J. Appl. Polym. Sci. 2017, 134 (14), https://doi.org/10.1002/app.44682.
  25. Mixed gas sorption in glassy polymeric membranes. III. CO2/CH4 mixtures in a polymer of intrinsic microporosity (PIM-1): Effect of temperature. A. E. Gemeda; M. G. De Angelis; N. Y. Du; N. W. Li; M. D. Guiver; G. C. Sarti, J. Membr. Sci. 2017, 524, 746-757, https://doi.org/10.1016/j.memsci.2016.11.053.
  26. Surface functionalization of high free-volume polymers as a route to efficient hydrogen separation membranes. B. Ghalei; Y. Kinoshita; K. Wakimoto; K. Sakurai; S. Mathew; Y. F. Yue; H. Kusuda; H. Imahori; E. Sivaniah, J Mater Chem A 2017, 5 (9), 4686-4694, https://doi.org/10.1039/c6ta09181d.
  27. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. B. Ghalei; K. Sakurai; Y. Kinoshita; K. Wakimoto; A. P. Isfahani; Q. L. Song; K. Doitomi; S. Furukawa; H. Hirao; H. Kusuda; S. Kitagawa; E. Sivaniah, Nat Energy 2017, 2 (7), https://doi.org/10.1038/nenergy.2017.86.
  28. Effect of pristine and functionalized single- and multi-walled carbon nanotubes on CO2 separation ofmixedmatrixmembranes based on polymers of intrinsic microporosity (PIM-1): a molecular dynamics simulation study. K. Golzar; H. Modarress; S. Amjad-Iranagh, J. Mol. Model. 2017, 23 (9), https://doi.org/10.1007/s00894-017-3436-3.
  29. Ethanolamine Purification by Nanofiltration through PIM-1 and Carbon Membranes: A Molecular Simulation Study. K. M. Gupta; Q. Shi; L. Sarkisov; J. W. Jiang, J Phys Chem C 2017, 121 (37), 20539-20545, https://doi.org/10.1021/acs.jpcc.7b07043.
  30. Blend membranes of ionic liquid and polymers of intrinsic microporosity with improved gas separation characteristics. K. Halder; M. M. Khan; J. Grnauer; S. Shishatskiy; C. Abetz; V. Filiz; V. Abetz, J. Membr. Sci. 2017, 539, 368-382, https://doi.org/10.1016/j.memsci.2017.06.022.
  31. A Cationic Diode Based on Asymmetric Nafion Film Deposits. D. P. He; E. Madrid; B. D. B. Aaronson; L. Fan; J. Doughty; K. Mathwig; A. M. Bond; N. B. McKeown; F. Marken, Acs Appl Mater Inter 2017, 9 (12), 11272-11278, https://doi.org/10.1021/acsami.7b01774.
  32. Redox reactivity at silver microparticle-glassy carbon contacts under a coating of polymer of intrinsic microporosity (PIM). D. P. He; E. Rauwel; R. Malpass-Evans; M. Carta; N. B. McKeown; D. B. Gorle; M. A. Kulandainathan; F. Marken, J. Solid State Electrochem. 2017, 21 (7), 2141-2146, https://doi.org/10.1007/s10008-017-3534-2.
  33. Carbonization of polymers of intrinsic microporosity to microporous heterocarbon: Capacitive pH measurements. N. Hernandez; J. Iniesta; V. M. Leguey; R. Armstrong; S. H. Taylor; E. Madrid; Y. Rong; R. Castaing; R. Malpass-Evans; M. Carta; N. B. McKeown; F. Marken, Applied Materials Today 2017, 9 (Supplement C), 136-144, https://doi.org/https://doi.org/10.1016/j.apmt.2017.06.003.
  34. Rigid-to-Flexible Conformational Transformation: An Efficient Route to Ring-Opening of a Troger’s Base-Containing Ladder Polymer. F. Ishiwari; N. Takeuchi; T. Sato; H. Yamazaki; R. Osuga; J. N. Kondo; T. Fukushima, Acs Macro Lett 2017, 6 (7), 775-780, https://doi.org/10.1021/acsmacrolett.7b00385.
  35. Highly Carboxylate-Functionalized Polymers of Intrinsic Microporosity for CO2-Selective Polymer Membranes. J. W. Jeon; D. G. Kim; E. H. Sohn; Y. Yoo; Y. S. Kim; B. G. Kim; J. C. Lee, Macromolecules 2017, 50 (20), 8019-8027, https://doi.org/10.1021/acs.macromol.7b01332.
  36. Defect-free PIM-1 hollow fiber membranes. M. L. Jue; V. Breedveld; R. P. Lively, J. Membr. Sci. 2017, 530, 33-41, https://doi.org/10.1016/j.memsci.2017.02.012.
  37. Synthesis, Physical and Rheological Properties of Troger Base Polymer. S. A. Karim; A. J. Braihi, Journal of Global Pharma Technology 2017, 12 (9), 30-35,
  1. Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1. M. R. Khdhayyer; E. Esposito; A. Fuoco; M. Monteleone; L. Giorno; J. C. Jansen; M. P. Attfield; P. M. Budd, Sep. Purif. Technol. 2017, 173, 304-313, https://doi.org/10.1016/j.seppur.2016.09.036.
  2. d Enhanced PIM-1 membrane gas separation selectivity through efficient dispersion of functionalized POSS fillers. Y. Kinoshita; K. Wakimoto; A. H. Gibbons; A. P. Isfahani; H. Kusuda; E. Sivaniah; B. Ghalei, J. Membr. Sci. 2017, 539, 178-186, https://doi.org/10.1016/j.memsci.2017.05.072.
  3. Molecular mobility and gas transport properties of nanocomposites based on PIM-1 and polyhedral oligomeric phenethyl-silsesquioxanes (POSS). N. Konnertz; Y. Ding; W. J. Harrison; P. M. Budd; A. Schonhals; M. Bohning, J. Membr. Sci. 2017, 529, 274-285, https://doi.org/10.1016/j.memsci.2017.02.007.
  4. NLDFT Pore Size Distribution in Amorphous Microporous Materials. G. Kupgan; T. P. Liyana-Arachchi; C. M. Colina, Langmuir 2017, 33 (42), 11138-11145, https://doi.org/10.1021/acs.langmuir.7b01961.
  5. Norbornyl Benzocyclobutene Ladder Polymers: Conformation and Microporosity. H. W. H. Lai; S. Liu; Y. Xia, J Polym Sci Pol Chem 2017, 55 (18), 3075-3081, https://doi.org/10.1002/pola.28640.
  6. Functionalized Rigid Ladder Polymers from Catalytic Arene-Norbornene Annulation Polymerization. H. W. H. Lai; Y. C. Teo; Y. Xia, Acs Macro Lett 2017, 6 (12), 1357-1361, https://doi.org/10.1021/acsmacrolett.7b00806.
  7. Intrinsically Hierarchical Nanoporous Polymers via Polymerization-Induced Microphase Separation. M. B. Larsen; J. D. Van Horn; F. Wu; M. A. Hillmyer, Macromolecules 2017, 50 (11), 4363-4371, https://doi.org/10.1021/acs.macromol.7b00808.
  8. Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification. K. S. Liao; S. Japip; J. Y. Lai; T. S. Chung, J. Membr. Sci. 2017, 534, 92-99, https://doi.org/10.1016/j.memsci.2017.04.017.
  9. Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin. J. Liu; Y. Xiao; K.-S. Liao; T.-S. Chung, J. Membr. Sci. 2017, 523, 92-102,
  10. Flexible thermally treated 3D PIM-CD molecular sieve membranes exceeding the upper bound line for propylene/propane separation. J. T. Liu; Y. C. Xiao; T. S. Chung, J Mater Chem A 2017, 5 (9), 4583-4595, https://doi.org/10.1039/c6ta09751k.
  11. H. Lv; X. Lingyun; Y. Yu Aminated polymer of intrinsic microporosity adsorbent and its application on absorption of dyes. CN107519849A, 2017.
  12. Facile Synthesis of a Hydroxyl-Functionalized Tröger’s Base Diamine: A New Building Block for High-Performance Polyimide Gas Separation Membranes. X. Ma; M. Abdulhamid; X. Miao; I. Pinnau, Macromolecules 2017, 50 (24), 9569-9576, https://doi.org/10.1021/acs.macromol.7b02301.
  13. Design and Synthesis of Polyimides Based on Carbocyclic Pseudo-Troger’s Base-Derived Dianhydrides for Membrane Gas Separation Applications. X. H. Ma; M. A. Abdulhamid; I. Pinnau, Macromolecules 2017, 50 (15), 5850-5857, https://doi.org/10.1021/acs.macromol.7b01054.
  14. The synthesis of polymers of intrinsic microporosity (PIMs). N. B. McKeown, Sci China Chem 2017, 60 (8), 1023-1032, https://doi.org/10.1007/s11426-017-9058-x.
  15. On the interpretation of cryogenic sorption isotherms in glassy polymers. M. Minelli; D. R. Paul; G. C. Sarti, J. Membr. Sci. 2017, 540, 229-242, https://doi.org/10.1016/j.memsci.2017.06.053.
  16. Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host. C. G. Morris; N. M. Jacques; H. G. W. Godfrey; T. Mitra; D. Fritsch; Z. Z. Lu; C. A. Murray; J. Potter; T. M. Cobb; F. J. Yuan; C. C. Tang; S. Yang; M. Schroder, Chem Sci 2017, 8 (4), 3239-3248, https://doi.org/10.1039/c6sc04343g.
  17. Mixed-Penetrant Sorption in Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1. W. Ogieglo; A. Furchner; B. Ghanem; X. H. Ma; I. Pinnau; M. Wessling, J. Phys. Chem. B 2017, 121 (43), 10190-10197, https://doi.org/10.1021/acs.jpcb.7b10061.
  18. How Do Organic Vapors Swell Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1? W. Ogieglo; K. Rahimi; S. B. Rauer; B. Ghanem; X. H. Ma; I. Pinnau; M. Wessling, J. Phys. Chem. B 2017, 121 (29), 7210-7220, https://doi.org/10.1021/acs.jpcb.7b03891.
  19. A Highly Soluble, Fully Aromatic Fluorinated 3D Nanostructured Ladder Polymer. L. I. Olvera; M. Rodriguez-Molina; F. A. Ruiz-Trevino; M. G. Zolotukhin; S. Fomine; J. Cardenas; R. Gavino; L. Alexandrova; R. A. Toscana; E. Martinez-Mercado, Macromolecules 2017, 50 (21), 8480-8486, https://doi.org/10.1021/acs.macromol.7b01413.
  20. Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications. K. Polak-Krasna; R. Dawson; L. T. Holyfield; C. R. Bowen; A. D. Burrows; T. J. Mays, J Mater Sci 2017, 52 (7), 3862-3875, https://doi.org/10.1007/s10853-016-0647-4.
  21. AFM imaging and nanoindentation of polymer of intrinsic microporosity PIM-1. K. Polak-Krasna; C. Fuhrhop; S. Rochat; A. D. Burrows; A. Georgiadis; C. R. Bowen; T. J. Mays, Int. J. Hydrogen Energy 2017, 42 (37), 23915-23919, https://doi.org/10.1016/j.ijhydene.2017.04.081.
  22. I. I. Ponomarev; Y. A. Volkova; D. Y. Razorenov; K. M. Skupov; I. V. Blagodatskikh Method of producing a polymer with intrinsic microporosity PIM-1. RU2626235C1, 2017.
  23. Ionic Diode Characteristics at a Polymer of Intrinsic Microporosity (PIM) | Nafion “Heterojunction” Deposit on a Microhole Poly(ethylene-terephthalate) Substrate. B. R. Putra; B. D. B. Aaronson; E. Madrid; K. Mathwig; M. Carta; R. Malpass-Evans; N. B. McKeown; F. Marken, Electroanal 2017, 29 (10), 2217-2223, https://doi.org/10.1002/elan.201700247.
  24. Potassium cation induced ionic diode blocking for a polymer of intrinsic microporosity | nafion “heterojunction” on a microhole substrate. B. Riza Putra; M. Carta; R. Malpass-Evans; N. B. McKeown; F. Marken, Electrochim. Acta 2017, 258, 807-813, https://doi.org/10.1016/j.electacta.2017.11.130.
  25. Analysis of the transport properties of thermally rearranged (TR) polymers and polymers of intrinsic microporosity (PIM) relative to upper bound performance. L. M. Robeson; M. E. Dose; B. D. Freeman; D. R. Paul, J. Membr. Sci. 2017, 525, 18-24, https://doi.org/10.1016/j.memsci.2016.11.085.
  26. Hydrogen storage in polymer-based processable microporous composites. S. Rochat; K. Polak-Krasna; M. Tian; L. T. Holyfield; T. J. Mays; C. R. Bowen; A. D. Burrows, J Mater Chem A 2017, 5 (35), 18752-18761, https://doi.org/10.1039/c7ta05232d.
  27. High-Utilisation Nanoplatinum Catalyst (Pt@ cPIM) Obtained via Vacuum Carbonisation in a Molecularly Rigid Polymer of Intrinsic Microporosity. Y. Rong; D. He; R. Malpass-Evans; M. Carta; N. B. McKeown; M. F. Gromboni; L. H. Mascaro; G. W. Nelson; J. S. Foord; P. Holdway, Electrocatalysis-Us 2017, 1-12,
  28. Polymer ultrapermeability from the inefficient packing of 2D chains. I. Rose; C. G. Bezzu; M. Carta; B. Comesana-Gandara; E. Lasseuguette; M. C. Ferrari; P. Bernardo; G. Clarizia; A. Fuoco; J. C. Jansen; K. E. Hart; T. P. Liyana-Arachchi; C. M. Colina; N. B. McKeown, Nat Mater 2017, 16 (9), 932-+, https://doi.org/10.1038/Nmat4939.
  29. Carbon molecular sieve membrane from a microporous spirobisindane-based polyimide precursor with enhanced ethylene/ethane mixed-gas selectivity. O. Salinas; X. H. Ma; Y. G. Wang; Y. Han; I. Pinnau, Rsc Adv 2017, 7 (6), 3265-3272, https://doi.org/10.1039/c6ra24699k.
  30. A Critical Update on the Synthesis of Carboxylated Polymers of Intrinsic Microporosity (C-PIMs). B. Santoso; P. Yanaranop; H. Kang; I. K. H. Leung; J. Jin, Macromolecules 2017, 50 (7), 3043-3050, https://doi.org/10.1021/acs.macromol.7b00344.
  31. Selective dye adsorption by chemically-modified and thermally-treated polymers of intrinsic microporosity. B. Satilmis; P. M. Budd, J. Colloid Interface Sci. 2017, 492, 81-91, https://doi.org/10.1016/j.jcis.2016.12.048.
  32. Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water. B. Satilmis; P. M. Budd; T. Uyar, React. Funct. Polym. 2017, 121, 67-75, https://doi.org/10.1016/j.reactfunctpolym.2017.10.019.
  33. Role of MOF surface defects on the microscopic structure of MOF/polymer interfaces: A computational study of the ZIF-8/PIMs systems. R. Semino; N. A. Ramsahye; A. Ghoufi; G. Maurin, Microporous Mesoporous Mater. 2017, 254, 184-191, https://doi.org/10.1016/j.micromeso.2017.02.031.
  34. Adsorption of Methyl Orange from Aqueous Solution by Polymer of Intrinsic Microporosity: Isotherms and Kinetics Study. M. Shakeel; K. Mehmood; M. Waseem; W. Rehman; K. H. Shah; M. Nawaz, J. Chem. Soc. Pak. 2017, 39 (3), 337-342,
  35. Carbon Nanofiber Paper Electrodes Based on Heterocyclic Polymers for High Temperature Polymer Electrolyte Membrane Fuel Cell. K. M. Skupov; I. I. Ponomarev; D. Y. Razorenov; V. G. Zhigalina; O. M. Zhigalina; I. I. Ponomarev; Y. A. Volkova; Y. M. Volfkovich; V. E. Sosenkin, Macromolecular Symposia 2017, 375 (1), https://doi.org/10.1002/masy.201600188.
  36. S. Sorribas; M. Tamaddondar; P. M. Budd In Membranes made of polymers of intrinsic microporosity (PIMs), Elsevier Ltd.: 2017; pp 216-235.
  37. Catalytic Oxidation of Thiols within Cavities of Phthalocyanine Network Polymers. R. Tamura; T. Kawata; Y. Hattori; N. Kobayashi; M. Kimura, Macromolecules 2017, 50 (20), 7978-7983, https://doi.org/10.1021/acs.macromol.7b01713.
  38. L. Tan; K. Wang; Q. Li; Y. Yang; Y. Lui; B. Tan, Organic Porous Polymer Materials:Design, Preparation, and Applications. In Polymer-Engineered Nanostructures for AdvancedEnergy Applications, Lin, Z., Ed. Springer International Publishing: 2017; pp 71-150.
  1. A strategy for preparing spirobichroman dianhydride from bisphenol A and its resulting polyimide with low dielectric characteristic. I. C. Tang; M. W. Wang; C. H. Wu; S. A. Dai; R. J. Jeng; C. H. Lin, Rsc Adv 2017, 7 (2), 1101-1109,
  2. Synthesis of Ladder Polymers: Developments, Challenges, and Opportunities. Y. C. Teo; H. W. H. Lai; Y. Xia, Chem-Eur J 2017, 23 (57), 14101-14112, https://doi.org/10.1002/chem.201702219.
  3. Physical aging, CO2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1). R. R. Tiwari; J. Y. Jin; B. D. Freeman; D. R. Paul, J. Membr. Sci. 2017, 537, 362-371, https://doi.org/10.1016/j.memsci.2017.04.069.
  4. Synthesis of fluorinated poly(arylene ether)s with dibenzodioxin and spirobisindane units from new bis(pentafluoropheny1)- and bis(nonafluorobiphenyl)-containing monomers. I. M. Tkachenko; N. A. Belov; Y. L. Kobzar; A. V. Dorokhin; O. V. Shekera; V. P. Shantarovich; V. G. Bekeshev; V. V. Shevchenko, J. Fluorine Chem. 2017, 195, 1-12, https://doi.org/10.1016/j.jfluchem.2017.01.008.
  5. Recent progress on submicron gas-selective polymeric membranes. M. H. Wang; J. J. Zhao; X. X. Wang; A. D. Liu; K. K. Gleason, J Mater Chem A 2017, 5 (19), 8860-8886, https://doi.org/10.1039/c7ta01862b.
  6. Soluble Polymers with Intrinsic Porosity for Flue Gas Purification and Natural Gas Upgrading. X. B. Wang; Y. Liu; X. H. Ma; S. K. Das; M. Ostwal; I. Gadwal; K. X. Yao; X. L. Dong; Y. Han; I. Pinnau; K. W. Huang; Z. P. Lai, Adv. Mater. 2017, 29 (10), 1605826, https://doi.org/10.1002/adma.201605826.
  7. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. Z. G. Wang; H. T. Ren; S. X. Zhang; F. Zhang; J. Jin, J Mater Chem A 2017, 5 (22), 10968-10977, https://doi.org/10.1039/c7ta01773a.
  8. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium-Sulfur Batteries. A. L. Ward; S. E. Doris; L. J. Li; M. A. Hughes; X. H. Qu; K. A. Persson; B. A. Helms, Acs Central Sci 2017, 3 (5), 399-406, https://doi.org/10.1021/acscentsci.7b00012.
  9. The Use of Iptycenes in Rational Macromolecular Design for Gas Separation Membrane Applications. J. R. Weidman; R. L. Guo, Industrial & Engineering Chemistry Research 2017, 56 (15), 4220-4236, https://doi.org/10.1021/acs.iecr.7b00540.
  10. Analysis of governing factors controlling gas transport through fresh and aged triptycene-based polyimide films. J. R. Weidman; S. J. Luo; C. M. Doherty; A. J. Hill; P. Y. Gao; R. L. Guo, J. Membr. Sci. 2017, 522, 12-22, https://doi.org/10.1016/j.memsci.2016.09.013.
  11. Structure Manipulation in Triptycene-Based Polyimides through Main Chain Geometry Variation and Its Effect on Gas Transport Properties. J. R. Weidman; S. J. Luo; Q. N. Zhang; R. L. Guo, Industrial & Engineering Chemistry Research 2017, 56 (7), 1868-1879, https://doi.org/10.1021/acs.iecr.6b04946.
  12. Highly microporous free-radically generated polymeric materials using a novel contorted monomer. M. S. Wendland, Polymer 2017, 126, 330-337, https://doi.org/10.1016/j.polymer.2017.05.022.
  13. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. X. Y. Wu; Z. Z. Tian; S. F. Wang; D. D. Peng; L. X. Yang; Y. Z. Wu; Q. P. Xin; H. Wu; Z. Y. Jiang, J. Membr. Sci. 2017, 528, 273-283, https://doi.org/10.1016/j.memsci.2017.01.042.
  14. Synthesis and characterization of novel Troger’s base containing polymers from commercial available diamines. Z. X. Wu; J. Y. Jin, Macromolecular Research 2017, 25 (6), 546-551, https://doi.org/10.1007/s13233-017-5131-8.
  15. Molecular design of Tröger’s base-based polymers with intrinsic microporosity for gas separation. Y. Xiao; L. Zhang; L. Xu; T.-S. Chung, J. Membr. Sci. 2017, 521, 65-72,
  16. A Current Position of Polyacetylenes Among Other Highly Permeable Membrane Materials. Y. Yampolskii, Polymer Reviews 2017, 57 (1), 200-212, https://doi.org/10.1080/15583724.2015.1127960.
  17. Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane. L. X. Yang; Z. Z. Tian; X. Y. Zhang; X. Y. Wu; Y. Z. Wu; Y. N. Wang; D. D. Peng; S. F. Wang; H. Wu; Z. Y. Jiang, J. Membr. Sci. 2017, 543, 69-78, https://doi.org/10.1016/j.memsci.2017.08.050.
  18. Microporous polymers Ultrapermeable membranes. Y. Yin; M. D. Guiver, Nat Mater 2017, 16 (9), 880-881, https://doi.org/10.1038/nmat4961.
  19. Mechanically Strong and Flexible Hydrolyzed Polymers of Intrinsic Microporosity (PIM-1) Membranes. W. F. Yong; T. S. Chung, J Polym Sci Pol Phys 2017, 55 (4), 344-354, https://doi.org/10.1002/polb.24279.
  20. Effects of hydrolyzed PIM-1 in polyimide-based membranes on C2-C4 alcohols dehydration via pervaporationle. W. F. Yong; P. Salehian; L. L. Zhang; T. S. Chung, J. Membr. Sci. 2017, 523, 430-438, https://doi.org/10.1016/j.memsci.2016.10.021.
  21. Engineering microporous organic framework membranes for CO2 separations. G. L. Yu; H. Z. Rong; X. Q. Zou; G. S. Zhu, Molecular Systems Design & Engineering 2017, 2 (3), 182-190, https://doi.org/10.1039/c7me00017k.
  22. Phthalazinone-based copolymers with intrinsic microporosity (PHPIMs) and their separation performance. K. Y. Yuan; C. Liu; S. H. Zhang; L. M. Jiang; C. D. Liu; G. P. Yu; J. Y. Wang; X. G. Jian, J. Membr. Sci. 2017, 541, 403-412, https://doi.org/10.1016/j.memsci.2017.07.021.
  23. Electrospun nanofibrous membrane of porous fluorine-containing triptycene-based polyimides for oil/water separation. T.-L. Zhai; Q. Du; S. Xu; Y. Wang; C. Zhang, Rsc Adv 2017, 7 (36), 22548-22552, https://doi.org/10.1039/C7RA01614J.
  24. Effects of the side groups of the spirobichroman-based diamines on the chain packing and gas separation properties of the polyimides. C. L. Zhang; P. Li; B. Cao, J. Membr. Sci. 2017, 530, 176-184, https://doi.org/10.1016/j.memsci.2017.02.030.
  25. Molecular Design of Troger’s Base-Based Polymers Containing Spirobichroman Structure for Gas Separation. C. L. Zhang; J. Yan; Z. K. Tian; X. B. Liu; B. Cao; P. Li, Industrial & Engineering Chemistry Research 2017, 56 (44), 12783-12788, https://doi.org/10.1021/acs.iecr.7b03434.
  26. Microporous Polyamide Membranes for Molecular Sieving of Nitrogen from Volatile Organic Compounds. H. L. Zhou; F. Tao; Q. Liu; C. X. Zong; W. C. Yang; X. Z. Cao; W. Q. Jin; N. P. Xu, Angew Chem Int Edit 2017, 56 (21), 5755-5759, https://doi.org/10.1002/anie.201700176.
  27. Evaluation of free volume and anisotropic chain orientation of Troger’s base (TB)-based microporous polyimide/copolyimide membranes. Y. B. Zhuang; S. Ando, Polymer 2017, 123, 39-48, https://doi.org/10.1016/j.polymer.2017.06.079.

 

2018

  1. Platinum Nanoparticle Inclusion into a Carbonized Polymer of Intrinsic Microporosity: Electrochemical Characteristics of a Catalyst for Electroless Hydrogen Peroxide Production. R. K. Adamik; N. Hernandez-Ibanez; J. Iniesta; J. K. Edwards; A. G. R. Howe; R. D. Armstrong; S. H. Taylor; A. Roldan; Y. Y. Rong; R. Malpass-Evans; M. Carta; N. B. McKeown; D. P. He; F. Marken, Nanomaterials 2018, 8 (7), https://doi.org/10.3390/nano8070542.
  2. Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. M. Alberto; R. Bhavsar; J. M. Luque-Alled; E. Prestat; L. Gao; P. M. Budd; A. Vijayaraghavan; G. Szekely; S. M. Holmes; P. Gorgojo, J. Membr. Sci. 2018, 565, 390-401, https://doi.org/10.1016/j.memsci.2018.08.050.
  3. Impeded physical aging in PIM-1 membranes containing graphene-like fillers. M. Alberto; R. Bhavsar; J. M. Luque-Alled; A. Vijayaraghavan; P. M. Budd; P. Gorgojo, J. Membr. Sci. 2018, 563, 513-520, https://doi.org/10.1016/j.memsci.2018.06.026.
  4. Covalently Modified Graphene Oxide and Polymer of Intrinsic Microporosity (PIM-1) in Mixed Matrix Thin-Film Composite Membranes. E. M. Aliyev; M. M. Khan; A. M. Nabiyev; R. M. Alosmanov; I. A. Bunyad-zadeh; S. Shishatskiy; V. Filiz, Nanoscale Research Letters 2018, 13, https://doi.org/10.1186/s11671-018-2771-3.
  5. Influence of size and nature of the aryl diborate spacer on the intrinsic microporosity of Iron(II) clathrochelate polymers. N. Baig; S. Shetty; S. Al-Mousawi; F. Al-Sagheer; B. Alameddine, Polymer 2018, 151, 164-170, https://doi.org/10.1016/j.polymer.2018.07.069.
  6. Designing Redox-Active Oligomers for Crossover-Free, Nonaqueous Redox-Flow Batteries with High Volumetric Energy Density. M. J. Baran; M. N. Braten; E. C. Montoto; Z. T. Gossage; L. Ma; E. Chenard; J. S. Moore; J. Rodriguez-Lopez; B. A. Helms, Chem. Mater. 2018, 30 (11), 3861-3866, https://doi.org/10.1021/acs.chemmater.8b01318.
  7. The synthesis, chain-packing simulation and long-term gas permeability of highly selective spirobifluorene-based polymers of intrinsic microporosity. C. G. Bezzu; M. Carta; M. C. Ferrari; J. C. Jansen; M. Monteleone; E. Esposito; A. Fuoco; K. Hart; T. P. Liyana-Arachchi; C. M. Colina; N. B. McKeown, J Mater Chem A 2018, 6 (22), 10507-10514, https://doi.org/10.1039/c8ta02601g.
  8. Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. R. S. Bhavsar; T. Mitra; D. J. Adams; A. I. Cooper; P. M. Budd, J. Membr. Sci. 2018, 564, 878-886, https://doi.org/10.1016/j.memsci.2018.07.089.
  9. Self-assembly of metal-organic polyhedra into supramolecular polymers with intrinsic microporosity. A. Carne-Sanchez; G. A. Craig; P. Larpent; T. Hirose; M. Higuchi; S. Kitagawa; K. Matsuda; K. Urayama; S. Furukawa, Nature Communications 2018, 9, https://doi.org/10.1038/s41467-018-04834-0.
  10. Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation. M. M. Chen; F. Soyekwo; Q. G. Zhang; C. Hu; A. M. Zhu; Q. L. Liu, Journal of Industrial and Engineering Chemistry 2018, 63, 296-302, https://doi.org/10.1016/j.jiec.2018.02.030.
  11. Application of spirobiindane-based microporous poly(ether sulfone)s as polymeric binder on solid alkaline exchange membrane fuel cells. J. Choi; M. H. Kim; J. Y. Han; J. E. Chae; W. H. Lee; Y. M. Lee; S. Y. Lee; J. H. Jang; J. Y. Kim; D. Henkensmeier; S. J. Yoo; Y. E. Sung; H. J. Kim, J. Membr. Sci. 2018, 568, 67-75, https://doi.org/10.1016/j.memsci.2018.09.048.
  12. Roll-to-roll dip coating of three different PIMs for Organic Solvent Nanofiltration. M. Cook; P. R. J. Gaffney; L. G. Peeva; A. G. Livingston, J. Membr. Sci. 2018, 558, 52-63, https://doi.org/10.1016/j.memsci.2018.04.046.
  13. Imide-Based Polymers of Intrinsic Microporosity: Probing the Microstructure in Relation to CO2 Sorption Characteristics. W. A. Elmehalmey; R. A. Azzam; Y. S. Hassan; M. H. Alkordi; T. M. Madkour, Acs Omega 2018, 3 (3), 2757-2764, https://doi.org/10.1021/acsomega.7b02080.
  14. A high efficiency and rapid adsorbent for removing sunset yellow FCF by amine-modified microporous polymer. J. S. Fan; Y. F. Ling; C. Gao; H. X. Lyu, Desalination and Water Treatment 2018, 124, 326-335, https://doi.org/10.5004/dwt.2018.22925.
  15. A novel time lag method for the analysis of mixed gas diffusion in polymeric membranes by on-line mass spectrometry: Method development and validation. S. C. Fraga; M. Monteleone; M. Lanc; E. Esposito; A. Fuoco; L. Giorno; K. Pilnacek; K. Friess; M. Carta; N. B. McKeown; P. Izak; Z. Petrusova; J. G. Crespo; C. Brazinha; J. C. Jansen, J. Membr. Sci. 2018, 561, 39-58, https://doi.org/10.1016/j.memsci.2018.04.029.
  16. Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Microporosity. A. Fuoco; B. Comesana-Gandara; M. Longo; E. Esposito; M. Monteleone; I. Rose; C. G. Bezzu; M. Carta; N. B. McKeown; J. C. Jansen, Acs Appl Mater Inter 2018, 10 (42), 36475-36482, https://doi.org/10.1021/acsami.8b13634.
  17. Organic solvent resistant membranes made from a cross-linked functionalized polymer with intrinsic microporosity (PIM) containing thioamide groups. J. Gao; S. Japip; T. S. Chung, Chem. Eng. J. 2018, 353, 689-698, https://doi.org/10.1016/j.cej.2018.07.156.
  18. Synthesis of Highly Gas-Permeable Polyimides of Intrinsic Microporosity Derived from 1,3,6,8-Tetramethyl-2,7-diaminotriptycene. B. S. Ghanem; F. Alghunaimi; Y. G. Wang; G. Genduso; I. Pinnau, Acs Omega 2018, 3 (9), 11874-11882, https://doi.org/10.1021/acsomega.8b01975.
  19. Catalytically active (Pd) nanoparticles supported by electrospun PIM-1: Influence of the sorption capacity of the polymer tested in the reduction of some aromatic nitro compounds. K. Halder; G. Bengtson; V. Filiz; V. Abetz, Applied Catalysis a-General 2018, 555, 178-188, https://doi.org/10.1016/j.apcata.2018.02.004.
  20. Investigation of gas transport and other physical properties in relation to the bromination degree of polymers of intrinsic microporosity. K. Halder; P. Georgopanos; S. Shishatskiy; V. Filiz; V. Abetz, J Polym Sci Pol Chem 2018, 56 (24), 2752-2761, https://doi.org/10.1002/pola.29262.
  21. Polymers of Intrinsic Microporosity Postmodified by Vinyl Groups for Membrane Applications. K. Halder; S. Neumann; G. Bengtson; M. M. Khan; V. Filiz; V. Abetz, Macromolecules 2018, 51 (18), 7309-7319, https://doi.org/10.1021/acs.macromol.8b01252.
  22. Intrinsic Porous Polymer-derived 3D Porous Carbon Electrodes for Electrical Double Layer Capacitor Applications. J. H. Han; D. H. Suh; T.-H. Kim, Applied Chemistry for Engineering 2018, 29 (6), 759-764,
  23. Recent advances in polymeric membranes for CO2 capture. Y. Han; W. S. W. Ho, Chin. J. Chem. Eng. 2018, 26 (11), 2238-2254, https://doi.org/https://doi.org/10.1016/j.cjche.2018.07.010.
  24. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries. K. H. Hendriks; S. G. Robinson; M. N. Braten; C. S. Sevov; B. A. Helms; M. S. Sigman; S. D. Minteer; M. S. Sanford, Acs Central Sci 2018, 4 (2), 189-196, https://doi.org/10.1021/acscentsci.7b00544.
  25. Multi-cation crosslinked anion exchange membranes from microporous Troger’s base copolymers. C. Hu; Q. G. Zhang; C. X. Lin; Z. Lin; L. Li; F. Soyekwo; A. M. Zhu; Q. L. Liu, J Mater Chem A 2018, 6 (27), 13302-13311, https://doi.org/10.1039/c8ta02153h.
  26. Solution-reprocessable microporous polymeric adsorbents for carbon dioxide capture. Z. G. Hu; Y. X. Wang; X. R. Wang; L. Z. Zhai; D. Zhao, AlChE J. 2018, 64 (9), 3376-3389, https://doi.org/10.1002/aic.16181.
  27. Intrinsically microporous co-polyimides derived from ortho-substituted Troger’s Base diamine with a pendant tert-butyl-phenyl group and their gas separation performance. X. F. Hua; Y. B. He; Z. Wang; J. L. Yan, Polymer 2018, 153, 173-182, https://doi.org/10.1016/j.polymer.2018.08.013.
  28. Ion-Stabilized Membranes for Demanding Environments Fabricated from Polybenzimidazole and Its Blends with Polymers of Intrinsic Microporosity. G. Ignacz; F. Fei; G. Szekely, ACS Appl. Nano Mater. 2018, 1 (11), 6349-6356, https://doi.org/10.1021/acsanm.8b01563.
  29. Intrinsically microporous polymer-based hierarchical nanostructuring of electrodes via nonsolvent-induced phase separation for high-performance supercapacitors. J. W. Jeon; J. H. Han; S. K. Kim; D. G. Kim; Y. S. Kim; D. H. Suh; Y. T. Hong; T. H. Kim; B. G. Kim, J Mater Chem A 2018, 6 (19), 8909-8915, https://doi.org/10.1039/c8ta02451k.
  30. The Researches on Polymers of Intrinsic Microporosity Membranes for Separation. Z. Jun; X. Wentao; S. Pengcheng; X. Zehai; F. Zheng; Z. Guoliang, IOP Conference Series: Earth and Environmental Science 2018, 170 (5), 052041,
  31. The Synthesis of a Novel Tröger Base Polymer of 2,6(7)-Diamino-9,9,10,10-tetramethyl-9,10-dihydroanthracene. S. A. Karim, ORIENTAL JOURNAL OF CHEMISTRY 2018, 34 (5), 2661-2666,
  1. Polymers for carrying and storing hydrogen. R. Kato; H. Nishide, Polym. J. 2018, 50 (1), 77-82, https://doi.org/10.1038/pj.2017.70.
  2. Mixed Matrix Membranes of Boron Icosahedron and Polymers of Intrinsic Microporosity (PIM-1) for Gas Separation. M. M. Khan; S. Shishatskiy; V. Filiz, Membranes 2018, 8 (1), https://doi.org/10.3390/membranes8010001.
  3. Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption. M. J. Klemes; Y. H. Ling; M. Chiapasco; A. Alsbaiee; D. E. Helbling; W. R. Dichtel, Chem Sci 2018, 9 (47), 8883-8889, https://doi.org/10.1039/c8sc03267j.
  4. Soluble polybenzimidazoles with intrinsic porosity: Synthesis, structure, properties and processability. V. Kumar; S. Chatterjee; P. Sharma; S. Chakrabarty; C. V. Avadhani; S. Sivaram, J Polym Sci Pol Chem 2018, 56 (10), 1046-1057, https://doi.org/10.1002/pola.28979.
  5. Plasticization behavior in polymers of intrinsic microporosity (PIM-1): A simulation study from combined Monte Carlo and molecular dynamics. G. Kupgan; A. G. Demidov; C. M. Colina, J. Membr. Sci. 2018, 565, 95-103, https://doi.org/10.1016/j.memsci.2018.08.004.
  6. Preparation of polymers of intrinsic microporosity composite membranes incorporated with modified nano-fumed silica for butanol separation. Y. Lan; P. Peng; P. Chen, Adv. Polym. Tech. 2018, 0 (0), https://doi.org/doi:10.1002/adv.22114.
  7. Linking the Cu(II/I) potential to the onset of dynamic phenomena at corroding copper microelectrodes immersed in aqueous 0.5 M NaCl. A. R. Langley; M. Carta; R. Malpass-Evans; N. B. McKeown; J. H. P. Dawes; E. Murphy; F. Marken, Electrochim. Acta 2018, 260, 348-357, https://doi.org/10.1016/j.electacta.2017.12.083.
  8. Temperature and Pressure Dependence of Gas Permeation in a Microporous Tröger’s Base Polymer. E. Lasseuguette; R. Malpass-Evans; M. Carta; N. McKeown; M.-C. Ferrari, Membranes 2018, 8 (4), 132,
  9. Ionic liquid mediated surface micropatterning of polymer blends. E. Lasseuguette; J. McClements; V. Koutsos; T. Schafer; M. C. Ferrari, J. Appl. Polym. Sci. 2018, 135 (14), https://doi.org/10.1002/app.46109.
  10. One-step preparation of microporous Pd@cPIM composite catalyst film for triphasic electrocatalysis. S. X. Leong; M. Carta; R. Malpass-Evans; N. B. McKeown; E. Madrid; F. Marken, Electrochemical Communications 2018, 86, 17-20, https://doi.org/10.1016/j.elecom.2017.11.007.
  1. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies. C. Y. Li; S. M. Meckler; Z. P. Smith; J. E. Bachman; L. Maserati; J. R. Long; B. A. Helms, Adv. Mater. 2018, 30 (8), https://doi.org/10.1002/adma.201704953.
  2. High-performance multiple-layer PIM composite hollow fiber membranes for gas separation. C. Z. Liang; J. T. Liu; J. Y. Lai; T. S. Chung, J. Membr. Sci. 2018, 563, 93-106, https://doi.org/10.1016/j.memsci.2018.05.045.
  3. Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. Z. X. Low; P. M. Budd; N. B. McKeown; D. A. Patterson, Chem. Rev. 2018, 118 (12), 5871-5911, https://doi.org/10.1021/acs.chemrev.7b00629.
  4. Polymers of Intrinsic Microporosity (PIMs) Gas Separation Membranes: A mini Review. C. Ma; J. J. Urban, Proceedings of the Nature Research Society 2018, 2, 02002, https://doi.org/10.11605/j.pnrs.201802002.
  5. Pristine and Carboxyl-Functionalized Tetraphenylethylene-Based Ladder Networks for Gas Separation and Volatile Organic Vapor Adsorption. X. Ma; Y. Wang; K. Yao; Z. Ali; Y. Han; I. Pinnau, ACS Omega 2018, 3 (11), 15966-15974, https://doi.org/10.1021/acsomega.8b02544.
  6. Effect of Film Thickness and Physical Aging on “Intrinsic” Gas Permeation Properties of Microporous Ethanoanthracene-Based Polyimides. X. H. Ma; I. Pinnau, Macromolecules 2018, 51 (3), 1069-1076, https://doi.org/10.1021/acs.macromol.7b02556.
  7. Evidence for entropic diffusion selection of xylene isomers in carbon molecular sieve membranes. Y. Ma; F. Y. Zhang; S. W. Yang; R. P. Lively, J. Membr. Sci. 2018, 564, 404-414, https://doi.org/10.1016/j.memsci.2018.07.040.
  8. Innovative methods in electrochemistry based on polymers of intrinsic microporosity. E. Madrid; N. B. McKeown, Current Opinion in Electrochemistry 2018, 10, 61-66, https://doi.org/10.1016/j.coelec.2018.04.008.
  9. Ionic Transport in Microhole Fluidic Diodes Based on Asymmetric Ionomer Film Deposits. K. Mathwig; B. D. B. Aaronson; F. Marken, ChemElectroChem 2018, 5 (6), 897-901, https://doi.org/10.1002/celc.201700464.
  10. Thermally Rearranged Polymer Membranes Containing Troger’s Base Units Have Exceptional Performance for Air Separations. S. M. Meckler; J. E. Bachman; B. P. Robertson; C. H. Zhu; J. R. Long; B. A. Helms, Angew Chem Int Edit 2018, 57 (18), 4912-4916, https://doi.org/10.1002/anie.201800556.
  11. A Novel Time Lag Method for the Analysis of Mixed Gas Diffusion in Polymeric Membranes by On-Line Mass Spectrometry: Pressure Dependence of Transport Parameters. M. Monteleone; E. Esposito; A. Fuoco; M. Lanc; K. Pilnacek; K. Friess; C. G. Bezzu; M. Carta; N. B. McKeown; J. C. Jansen, Membranes 2018, 8 (3), https://doi.org/10.3390/membranes8030073.
  12. Effect of the Backbone Tether on the Electrochemical Properties of Soluble Cyclopropenium Redox-Active Polymers. E. C. Montoto; Y. Cao; K. Hernandez-Burgos; C. S. Sevov; M. N. Braten; B. A. Helms; J. S. Moore; J. Rodriguez-Lopez, Macromolecules 2018, 51 (10), 3539-3546, https://doi.org/10.1021/acs.macromol.8b00574.
  13. CO2 Adsorption on PIMs Studied with C-13 NMR Spectroscopy. J. K. Moore; R. M. Marti; M. D. Guiver; N. Y. Du; M. S. Conradi; S. E. Hayes, J Phys Chem C 2018, 122 (8), 4403-4408, https://doi.org/10.1021/acs.jpcc.7b12312.
  14. In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control. T. B. Nguyen; D. Rodrigue; S. Kaliaguine, J. Membr. Sci. 2018, 548, 429-438, https://doi.org/10.1016/j.memsci.2017.11.054.
  15. Preventing Crossover in Redox Flow Batteries through Active Material Oligomerization. S. Odom, Acs Central Sci 2018, 4 (2), 140-141, https://doi.org/10.1021/acscentsci.8b00099.
  16. High-Pressure CO2 Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement. W. Ogieglo; B. Ghanem; X. H. Ma; M. Wessling; I. Pinnau, Acs Appl Mater Inter 2018, 10 (13), 11369-11376, https://doi.org/10.1021/acsami.8b01402.
  17. In-situ non-invasive imaging of liquid-immersed thin film composite membranes. W. Ogieglo; I. Pinnau; M. Wessling, J. Membr. Sci. 2018, 546, 206-214, https://doi.org/10.1016/j.memsci.2017.10.027.
  18. Dynamic self-correcting nucleophilic aromatic substitution. W. J. Ong; T. M. Swager, Nature Chemistry 2018, 10 (10), 1023-1030, https://doi.org/10.1038/s41557-018-0122-8.
  19. Hierarchical porous membrane via electrospinning PIM-1 for micropollutants removal. Y. Pan; L. J. Zhang; Z. J. Li; L. J. Ma; Y. F. Zhang; J. Wang; J. Q. Meng, Appl. Surf. Sci. 2018, 443, 441-451, https://doi.org/10.1016/j.apsusc.2018.02.241.
  20. Proton Conduction in Tröger’s Base-Linked Poly(crown ether)s. H. A. Patel; J. Selberg; D. Salah; H. Chen; Y. Liao; S. K. Mohan Nalluri; O. K. Farha; R. Q. Snurr; M. Rolandi; J. F. Stoddart, Acs Appl Mater Inter 2018, 10 (30), 25303-25310, https://doi.org/10.1021/acsami.8b05532.
  21. New Azo-DMOF-1 MOF as a Photoresponsive Low-Energy CO2 Adsorbent and Its Exceptional CO2/N2 Separation Performance in Mixed Matrix Membranes. N. Prasetya; B. P. Ladewig, ACS Appl. Mater. Interfaces 2018, 10 (40), 34291-34301, https://doi.org/10.1021/acsami.8b12261.
  22. Soluble, porous semifluorinated poly(arylene ether) ladder polymers from 2,3,4,5,6-pentafluorobenzonitrile. K. Ranganathan; A. Parthiban, Polymer 2018, 135, 295-304, https://doi.org/10.1016/j.polymer.2017.12.031.
  23. Hierarchical electrospun PIM nanofibers decorated with ZnO nanorods for effective pollutant adsorption and photocatalytic degradation. K. S. Ranjith; B. Satilmis; T. Uyar, Mater. Today 2018, 21 (9), 989-990, https://doi.org/10.1016/j.mattod.2018.09.003.
  24. Discrete Triptycene-Based Hexakis(metalsalphens): Extrinsic Soluble Porous Molecules of Isostructural Constitution. D. Reinhard; W. S. Zhang; F. Rominger; R. Curticean; I. Wacker; R. R. Schroder; M. Mastalerz, Chem-Eur J 2018, 24 (44), 11433-11437, https://doi.org/10.1002/chem.201802041.
  25. Ionic-Functionalized Polymers of Intrinsic Microporosity for Gas Separation Applications. S. J. Rukmani; T. P. Liyana-Arachchi; K. E. Hart; C. M. Colina, Langmuir 2018, 34 (13), 3949-3960, https://doi.org/10.1021/acs.langmuir.7b04320.
  26. Towards High Performance Metal-Organic Framework-Microporous Polymer Mixed Matrix Membranes: Addressing Compatibility and Limiting Aging by Polymer Doping. A. Sabetghadam; X. L. Liu; A. F. Orsi; M. M. Lozinska; T. Johnson; K. M. B. Jansen; P. A. Wright; M. Carta; N. B. McKeown; F. Kapteijn; J. Gascon, Chem-Eur J 2018, 24 (49), 12796-12800, https://doi.org/10.1002/chem.201803006.
  27. Hydrogen Separation at High Temperature with Dense and Asymmetric Membranes Based on PIM-EA(H2)-TB/PBI Blends. J. Sanchez-Lainez; B. Zornoza; M. Carta; R. Malpass-Evans; N. B. McKeown; C. Tellez; J. Coronas, Ind. Eng. Chem. Res. 2018, 57 (49), 16909-16916, https://doi.org/10.1021/acs.iecr.8b04209.
  28. Temperature and pressure dependence of gas permeation in amine-modified PIM-1. B. Satilmis; M. Lanc; A. Fuoco; C. Rizzuto; E. Tocci; P. Bernardo; G. Clarizia; E. Esposito; M. Monteleone; M. Dendisova; K. Friess; P. M. Budd; J. C. Jansen, J. Membr. Sci. 2018, 555, 483-496, https://doi.org/10.1016/j.memsci.2018.03.039.
  29. Removal of aniline from air and water by polymers of intrinsic microporosity (PIM-1) electrospun ultrafine fibers. B. Satilmis; T. Uyar, J. Colloid Interface Sci. 2018, 516, 317-324, https://doi.org/10.1016/j.jcis.2018.01.069.
  30. Superhydrophobic Hexamethylene Diisocyanate Modified Hydrolyzed Polymers of Intrinsic Microporosity Electrospun Ultrafine Fibrous Membrane for the Adsorption of Organic Compounds and Oil/Water Separation. B. Satilmis; T. Uyar, ACS Applied Nano Materials 2018, 1 (4), 1631-1640, https://doi.org/10.1021/acsanm.8b00115.
  31. Amine modified electrospun PIM-1 ultrafine fibers for an efficient removal of methyl orange from an aqueous system. B. Satilmis; T. Uyar, Appl. Surf. Sci. 2018, 453, 220-229, https://doi.org/10.1016/j.apsusc.2018.05.069.
  32. Synthesis of linear polymer of intrinsic microporosity from 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethylspirobisindane and decafluorobiphenyl. H. Sato; S. Nakajo; Y. Oishi; Y. Shibasaki, Reactive & Functional Polymers 2018, 125, 70-76, https://doi.org/10.1016/j.reactfunctpolym.2018.02.006.
  33. Water Resistant Composite Membranes for Carbon Dioxide Separation from Methane. C. A. Scholes, Applied Sciences-Basel 2018, 8 (5), https://doi.org/10.3390/app8050829.
  34. Microporous polymeric composite membranes with advanced film properties: pore intercalation yields excellent CO2 separation performance. A. K. Sekizkardes; V. A. Kusuma; J. S. McNally; D. W. Gidley; K. Resnik; S. R. Venna; D. Hopkinson, J Mater Chem A 2018, 6 (45), 22472-22477, https://doi.org/10.1039/c8ta07424k.
  35. Understanding the origins of metal-organic framework/polymer compatibility. R. Semino; J. C. Moreton; N. A. Ramsahye; S. M. Cohen; G. Maurin, Chem Sci 2018, 9 (2), 315-324, https://doi.org/10.1039/c7sc04152g.
  36. A New Pentiptycene-Based Dianhydride and Its High-Free-Volume Polymer for Carbon Dioxide Removal. A. A. Shamsabadi; F. Seidi; M. Nozari; M. Soroush, Chemsuschem 2018, 11 (2), 472-482, https://doi.org/10.1002/cssc.201701491.
  37. Nanoporosity of Polymer Membrane Materials and Sorbents According to Positron Annihilation and Low-Temperature Gas Sorption Data. V. P. Shantarovich; V. G. Bekeshev; I. B. Kevdina; Y. P. Yampolskii; M. V. Bermeshev; N. A. Belov, High Energ. Chem. 2018, 52 (4), 275-282, https://doi.org/10.1134/s0018143918040148.
  38. Water desalination and biofuel dehydration through a thin membrane of polymer of intrinsic microporosity: Atomistic simulation study. Q. Shi; K. Zhang; R. Lu; J. Jiang, J. Membr. Sci. 2018, 545, 49-56, https://doi.org/10.1016/j.memsci.2017.09.057.
  39. A facile synthesis of contorted spirobisindane-diamine and its microporous polyimides for gas separation. B. B. Shrestha; K. Wakimoto; Z. G. Wang; A. P. Isfahani; T. Suma; E. Sivaniah; B. Ghalei, Rsc Adv 2018, 8 (12), 6326-6330, https://doi.org/10.1039/c7ra12719g.
  40. Intrinsically microporous polyimides containing spirobisindane and phenazine units: Synthesis, characterization and gas permeation properties. B. Shrimant; Y. Dangat; U. K. Kharul; P. P. Wadgaonkar, J Polym Sci Pol Chem 2018, 56 (7), 766-775, https://doi.org/10.1002/pola.28950.
  41. Spiro fluorene-9,9 ‘-xanthene -containing copolymers of intrinsic microporosity: synthesis, characterization and gas permeation properties. B. Shrimant; U. K. Kharul; P. P. Wadgaonkar, Reactive & Functional Polymers 2018, 133, 153-160, https://doi.org/10.1016/j.reactfunctpolym.2018.10.008.
  42. Synthesis, characterization, and gas permeation properties of adamantane-containing polymers of intrinsic microporosity. B. Shrimant; S. V. Shaligram; U. K. Kharul; P. P. Wadgaonkar, J. Polym. Sci., Part A: Polym. Chem. 2018, 56 (1), 16-24, https://doi.org/10.1002/pola.28710.
  43. Effective increase in permeability and free volume of PIM copolymers containing ethanoanthracene unit and comparison between the alternating and random copolymers. L. Starannikova; N. Belov; V. Shantarovich; J. Zhang; J. Y. Jin; Y. Yampolskii, J. Membr. Sci. 2018, 548, 593-597, https://doi.org/10.1016/j.memsci.2017.11.049.
  44. Highly permeable polyimide membranes with a structural pyrene containing tert-butyl groups: Synthesis, characterization and gas transport. R. Sulub-Sulub; M. I. Loria-Bastarrachea; H. Vazquez-Torres; J. L. Santiago-Garcia; M. Aguilar-Vega, J. Membr. Sci. 2018, 563, 134-141, https://doi.org/10.1016/j.memsci.2018.05.054.
  45. Synthesis and properties of new aromatic polyimides containing spirocyclic structures. C. A. Terraza; L. H. Tagle; J. L. Santiago-Garcia; R. J. Canto-Acosta; M. Aguilar-Vega; R. A. Hauyon; D. Coll; P. Ortiz; G. Perez; L. Herran; B. Comesana-Gandara; N. B. McKeown; A. Tundidor-Camba, Polymer 2018, 137, 283-292, https://doi.org/10.1016/j.polymer.2018.01.013.
  46. Porous organic polymer as fillers for fabrication of defect-free PIM-1 based mixed matrix membranes with facilitating CO2-transfer chain. C. H. Wang; F. Y. Guo; H. Li; J. A. Xu; J. Hu; H. L. Liu, J. Membr. Sci. 2018, 564, 115-122, https://doi.org/10.1016/j.memsci.2018.07.018.
  47. Tuning the Gas Selectivity of Troger’s Base Polyimide Membranes by Using Carboxylic Acid and Tertiary Base Interactions. Z. G. Wang; A. P. Isfahani; K. Wakimoto; B. B. Shrestha; D. Yamaguchi; B. Ghalei; E. Sivaniah, Chemsuschem 2018, 11 (16), 2744-2751, https://doi.org/10.1002/cssc.201801002.
  48. Carbon Molecular Sieve Membranes Derived from Troger’s Base-Based Microporous Polyimide for Gas Separation. Z. G. Wang; H. T. Ren; S. X. Zhang; F. Zhang; J. Jin, Chemsuschem 2018, 11 (5), 916-923, https://doi.org/10.1002/cssc.201702243.
  49. A highly rigid and gas selective methanopentacene-based polymer of intrinsic microporosity derived from Troger’s base polymerization. R. Williams; L. A. Burt; E. Esposito; J. C. Jansen; E. Tocci; C. Rizzuto; M. Lanc; M. Carta; N. B. McKeown, J Mater Chem A 2018, 6 (14), 5661-5667, https://doi.org/10.1039/c8ta00509e.
  50. Structural Tuning of Polymers of Intrinsic Microporosity via the Copolymerization with Macrocyclic 4-tert-butylcalix 4 arene for Enhanced Gas Separation Performance. J. Wu; J. T. Liu; T. S. Chung, Advanced Sustainable Systems 2018, 2 (10), https://doi.org/10.1002/adsu.201800044.
  51. Effective Conversion of Amide to Carboxylic Acid on Polymers of Intrinsic Microporosity (PIM-1) with Nitrous Acid. W. H. Wu; P. Thomas; P. Hume; J. Y. Jin, Membranes 2018, 8 (2), https://doi.org/10.3390/membranes8020020.
  52. Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. X. Y. Wu; W. Liu; H. Wu; X. Zong; L. X. Yang; Y. Z. Wu; Y. X. Ren; C. Y. Shi; S. F. Wang; Z. Y. Jiang, J. Membr. Sci. 2018, 548, 309-318, https://doi.org/10.1016/j.memsci.2017.11.038.
  53. Palladium catalyst imbedded in polymers of intrinsic microporosity for the Suzuki-Miyaura coupling reaction. J. W. Xu; J. J. Ou; L. F. Chen; H. Y. Zhang; S. J. Ma; M. L. Ye, Rsc Adv 2018, 8 (61), 35205-35210, https://doi.org/10.1039/c8ra06214e.
  54. Molecular Simulation and Analysis of Sorption Process toward Theoretical Prediction for Liquid Permeation through Membranes. Q. Xu; K. Zhang; J. Jiang, The Journal of Physical Chemistry B 2018, 122 (50), 12211-12218, https://doi.org/10.1021/acs.jpcb.8b09785.
  55. Computational Characterization of Ultrathin Polymer Membranes in Liquids. Q. S. Xu; J. W. Jiang, Macromolecules 2018, 51 (18), 7169-7177, https://doi.org/10.1021/acs.macromol.8b01387.
  56. Preparation and antifouling property improvement of Troger’s base polymer ultrafiltration membrane. Z. Z. Xu; J. Y. Liao; H. Tang; J. E. Efome; N. W. Li, J. Membr. Sci. 2018, 561, 59-68, https://doi.org/10.1016/j.memsci.2018.05.042.
  57. Mn(III)-Porphyrin Containing Heterogeneous Catalyst based on Microporous Polymeric Constituents as a New Class of Catalyst Support. J. Y. Yi; H. Y. Jeong; D. Y. Shin; C. Kim; S. J. Lee, Chemcatchem 2018, 10 (18), 3974-3977, https://doi.org/10.1002/cctc.201800973.
  58. First Clear-Cut Experimental Evidence of a Glass Transition in a Polymer with Intrinsic Microporosity: PIM-1. H. J. Yin; Y. Z. Chua; B. Yang; C. Schick; W. J. Harrison; P. M. Budd; M. Bohning; A. Schonhals, Journal of Physical Chemistry Letters 2018, 9 (8), 2003-2008, https://doi.org/10.1021/acs.jpclett.8b00422.
  59. Controlling the polysulfide diffusion in lithium-sulfur batteries with a polymer membrane with intrinsic nanoporosity. X. W. Yu; S. N. Feng; M. J. Boyer; M. Lee; R. C. Ferrier; N. A. Lynd; G. S. Hwang; G. B. Wang; S. Swinnea; A. Manthiram, Materials Today Energy 2018, 7, 98-104, https://doi.org/10.1016/j.mtener.2018.01.002.
  60. Preparation and Gas Separation Properties of PIM-CO19 Based Thermally Induced Rigid Membranes. J. H. Yunhua LU, Lin LI, Jing SONG, Guoyong XIAO, Tonghua WANG, Chinese Journal of Materials Research 2018, 32 (4), 271-277, https://doi.org/10.11901/1005.3093.2017.295.
  61. Sorption and Nanofiltration Characteristics of PIM-1 Material in Polar and Non-Polar Solvents. A. Yushkin; T. Anokhina; S. Bazhenov; I. Borisov; P. Budd; A. Volkov, Petroleum Chemistry 2018, 58 (13), 1154-1158, https://doi.org/10.1134/S096554411813011X.
  62. Evaluation of liquid transport properties of hydrophobic polymers of intrinsic microporosity by electrical resistance measurement. A. Yushkin; V. Vasilevsky; V. Khotimskiy; A. Szymczyk; A. Volkov, J. Membr. Sci. 2018, 554, 346-356, https://doi.org/10.1016/j.memsci.2018.03.022.
  63. Crystalline Dioxin-Linked Covalent Organic Frameworks from Irreversible Reactions. B. Zhang; M. F. Wei; H. Y. Mao; X. K. Pei; S. A. Alshmimri; J. A. Reimer; O. M. Yaghi, J. Am. Chem. Soc. 2018, 140 (40), 12715-12719, https://doi.org/10.1021/jacs.8b08374.
  64. Post-crosslinking of triptycene-based Troger’s base polymers with enhanced natural gas separation performance. C. L. Zhang; L. X. Fu; Z. K. Tian; B. Cao; P. Li, J. Membr. Sci. 2018, 556, 277-284, https://doi.org/10.1016/j.memsci.2018.04.013.
  65. Preparation and Gas Separation Properties of Spirobichroman-Based Polyimides. C. L. Zhang; P. Li, Macromol. Chem. Phys. 2018, 219 (16), https://doi.org/10.1002/macp.201800157.
  66. Solution-Based 3D Printing of Polymers of Intrinsic Microporosity. F. Y. Zhang; Y. Ma; J. S. Liao; V. Breedveld; R. P. Lively, Macromol. Rapid Commun. 2018, 39 (13), https://doi.org/10.1002/marc.201800274.
  67. Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate. H. Zhao; L. Feng; X. Ding; X. Tan; Y. Zhang, Chin. J. Chem. Eng. 2018, https://doi.org/10.1016/j.cjche.2018.03.009.
  68. The nitrogen-doped porous carbons/PIM mixed-matrix membranes for CO2 separation. H. Y. Zhao; L. Z. Feng; X. L. Ding; Y. Zhao; X. Y. Tan; Y. Z. Zhang, J. Membr. Sci. 2018, 564, 800-805, https://doi.org/10.1016/j.memsci.2018.07.075.
  69. Blending of compatible polymer of intrinsic microporosity (PIM-1) with Troger’s Base polymer for gas separation membranes. S. S. Zhao; J. Y. Liao; D. F. Li; X. D. Wang; N. W. Li, J. Membr. Sci. 2018, 566, 77-86, https://doi.org/10.1016/j.memsci.2018.08.010.
  70. Porous Organic Polymers via Ring Opening Metathesis Polymerization. Y. C. Zhao; Y. He; T. M. Swager, Acs Macro Lett 2018, 7 (3), 300-304, https://doi.org/10.1021/acsmacrolett.8b00041.
  71. Accelerating Membrane-based CO2 Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling. X. Zhu; Y. Y. Hua; C. C. Tian; C. W. Abney; P. Zhang; T. Jin; G. P. Liu; K. L. Browning; R. L. Sacci; G. M. Veith; H. C. Zhou; W. Q. Jin; S. Dai, Angew Chem Int Edit 2018, 57 (11), 2816-2821, https://doi.org/10.1002/anie.201710420.
  72. Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity – the Boson peak of PIM-1. R. Zorn; H. J. Yin; W. Lohstroh; W. Harrison; P. M. Budd; B. R. Pauw; M. Bohning; A. Schonhals, PCCP 2018, 20 (3), 1355-1363, https://doi.org/10.1039/c7cp07141h.
  73. Microporous Organic Materials for Membrane-Based Gas Separation. X. Q. Zou; G. S. Zhu, Adv. Mater. 2018, 30 (3), https://doi.org/10.1002/adma.201700750.

 

2019

  1. Microporous Polyimides from Ladder Diamines Synthesized by Facile Catalytic Arene–Norbornene Annulation as High-Performance Membranes for Gas Separation. M. A. Abdulhamid; H. W. H. Lai; Y. Wang; Z. Jin; Y. C. Teo; X. Ma; I. Pinnau; Y. Xia, Chem. Mater. 2019, 31 (5), 1767-1774, https://doi.org/10.1021/acs.chemmater.8b05359.
  2. Synthesis and Characterization of Organo-Soluble Polyimides Derived from Alicyclic Dianhydrides and a Dihydroxyl-Functionalized Spirobisindane Diamine. M. A. Abdulhamid; X. H. Ma; B. S. Ghanem; I. Pinnau, Acs Applied Polymer Materials 2019, 1 (1), 63-69, https://doi.org/10.1021/acsapm.8b00036.
  3. Thin film composite membranes from polymers of intrinsic microporosity using layer-by-layer method. P. Agarwal; I. Tomlinson; R. E. Hefner, Jr.; S. Ge; Y. Rao; T. Dikic, J. Membr. Sci. 2019, 572, 475-479, https://doi.org/10.1016/j.memsci.2018.11.028.
  4. Highly active manganese porphyrin-based microporous network polymers for selective oxidation reactions. A. R. Antonangelo; C. Grazia Bezzu; N. B. McKeown; S. Nakagaki, J. Catal. 2019, 369, 133-142, https://doi.org/10.1016/j.jcat.2018.10.036.
  5. Large-Scale Computational Screening of Metal Organic Framework (MOF) Membranes and MOF-Based Polymer Membranes for H-2/N-2 Separations. A. N. V. Azar; S. Velioglu; S. Keskin, Acs Sustainable Chemistry & Engineering 2019, 7 (10), 9525-9536, https://doi.org/10.1021/acssuschemeng.9b01020.
  6. Design Rules for Membranes from Polymers of Intrinsic Microporosity for Crossover-free Aqueous Electrochemical Devices. M. J. Baran; M. N. Braten; S. Sahu; A. Baskin; S. M. Meckler; L. Li; L. Maserati; M. E. Carrington; Y.-M. Chiang; D. Prendergast; B. A. Helms, Joule 2019, 3 (12), 2968-2985, https://doi.org/10.1016/j.joule.2019.08.025.
  7. The fabrication of ultrathin films and their gas separation performance from polymers of intrinsic microporosity with two-dimensional (2D) and three-dimensional (3D) chain conformations. J. Benito; J. Vidal; J. Sanchez-Lainez; B. Zornoza; C. Tellez; S. Martin; K. J. Msayib; B. Comesana-Gandara; N. B. McKeown; J. Coronas; I. Gascon, J. Colloid Interface Sci. 2019, 536, 474-482, https://doi.org/10.1016/j.jcis.2018.10.075.
  8. P. Bernardo, Chapter 10 – Microporous Polymeric Membranes: Structure, Preparation, Characterization, and Applications. In Current Trends and Future Developments on (Bio-) Membranes, Basile, A.; Ghasemzadeh, K., Eds. Elsevier: 2019; pp 225-258.
  9. Thin film composite membranes based on a polymer of intrinsic microporosity derived from Troger’s base: A combined experimental and computational investigation of the role of residual casting solvent. P. Bernardo; V. Scorzafave; G. Clarizia; E. Tocci; J. C. Jansen; A. Borgogno; R. Malpass-Evans; N. B. McKeown; M. Carta; F. Tasselli, J. Membr. Sci. 2019, 569, 17-31, https://doi.org/10.1016/j.memsci.2018.10.001.
  10. Synergistic enhancement of gas selectivity in thin film composite membranes of PIM-1. I. Borisov; D. Bakhtin; J. M. Luque-Alled; A. Rybakova; V. Makarova; A. B. Foster; W. J. Harrison; V. Volkov; V. Polevaya; P. Gorgojo, J Mater Chem A 2019, 7 (11), 6417-6430, https://doi.org/10.1039/c8ta10691f.
  11. Designer Polymers Boost Cation Exchange. P. M. Budd, Trends in Chemistry 2019, 1 (9), 797-798, https://doi.org/10.1016/j.trechm.2019.10.006.
  12. High-throughput computational prediction of the cost of carbon capture using mixed matrix membranes. S. Budhathoki; O. Ajayi; J. A. Steckel; C. E. Wilmer, Energy & Environmental Science 2019, 12 (4), 1255-1264, https://doi.org/10.1039/C8EE02582G.
  13. Composite membranes based on geometrically constrained PIM-1 for dehumidification of gas mixtures. E. A. Chernova; I. V. Roslyakov; S. G. Dorofeev; A. V. Lukashin, Nanosystems-Physics Chemistry Mathematics 2019, 10 (3), 282-288, https://doi.org/10.17586/2220-8054-2019-10-3-282-288.
  14. Pervaporation and vapour permeation of methanol – dimethyl carbonate mixtures through PIM-1 membranes. P. Číhal; O. Vopička; T.-M. Durďáková; P. M. Budd; W. Harrison; K. Friess, Sep. Purif. Technol. 2019, 217, 206-214, https://doi.org/10.1016/j.seppur.2019.02.023.
  15. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. B. Comesaña-Gándara; J. Chen; C. G. Bezzu; M. Carta; I. Rose; M.-C. Ferrari; E. Esposito; A. Fuoco; J. C. Jansen; N. B. McKeown, Energy & Environmental Science 2019, 12 (9), 2733-2740, https://doi.org/10.1039/C9EE01384A.
  16. Macromolecular design strategies toward tailoring free volume in glassy polymers for high performance gas separation membranes. T. Corrado; R. Guo, Molecular Systems Design & Engineering 2019, https://doi.org/10.1039/C9ME00099B.
  17. Highly Porous Organic Polymers for Hydrogen Fuel Storage. K. Cousins; R. Zhang, Polymers 2019, 11 (4), 690, https://doi.org/10.3390/polym11040690.
  18. High-Throughput Screening of Metal Organic Frameworks as Fillers in Mixed Matrix Membranes for Flue Gas Separation. H. Daglar; S. Keskin, Advanced Theory and Simulations 2019, 2 (11), 1900109, https://doi.org/10.1002/adts.201900109.
  19. Functionalization and Fabrication of Soluble Polymers of Intrinsic Microporosity for CO2 Transformation and Uranium Extraction. A. Dong; T. Dai; M. Ren; X. Zhao; S. Zhao; Y. Yuan; Q. Chen; N. Wang, Engineered Science 2019, 36, 38, https://doi.org/10.30919/es8d613.
  20. Interfacial Property Modulation of PIM-1 through Polydopamine-Derived Submicrospheres for Enhanced CO2/N2 Separation Performance. G. Dong; J. Zhang; Z. Wang; J. Wang; P. Zhao; X. Cao; Y. Zhang, Acs Appl Mater Inter 2019, 11 (21), 19613-19622, https://doi.org/10.1021/acsami.9b02281.
  21. Highly Permeable Matrimid®/PIM-EA(H2)-TB Blend Membrane for Gas Separation. E. Esposito; I. Mazzei; M. Monteleone; A. Fuoco; M. Carta; N. McKeown; R. Malpass-Evans; J. Jansen, Polymers 2019, 11 (1), 46, https://doi.org/10.3390/polym11010046.
  22. Tröger ‘s base mixed matrix membranes for gas separation incorporating NH2-MIL-53(Al) nanocrystals. Y. Fan; C. Li; X. Zhang; X. Yang; X. Su; H. Ye; N. Li, J. Membr. Sci. 2019, 573, 359-369, https://doi.org/10.1016/j.memsci.2018.12.004.
  23. The origin of size-selective gas transport through polymers of intrinsic microporosity. A. Fuoco; C. Rizzuto; E. Tocci; M. Monteleone; E. Esposito; P. M. Budd; M. Carta; B. Comesaña-Gándara; N. B. McKeown; J. C. Jansen, J Mater Chem A 2019, 7 (35), 20121-20126, https://doi.org/10.1039/C9TA07159H.
  24. Biphasic Voltammetry and Spectroelectrochemistry in Polymer of Intrinsic Microporosity—4-(3-Phenylpropyl)-Pyridine Organogel/Aqueous Electrolyte Systems: Reactivity of MnPc Versus MnTPP. V. Ganesan; E. Madrid; R. Malpass-Evans; M. Carta; N. B. McKeown; F. Marken, Electrocatalysis-Us 2019, 10 (4), 295-304, https://doi.org/10.1007/s12678-018-0497-8.
  25. Synthesis and Gas-Permeation Characterization of a Novel High-Surface Area Polyamide Derived from 1,3,6,8-Tetramethyl-2,7-diaminotriptycene: Towards Polyamides of Intrinsic Microporosity (PIM-PAs). G. Genduso; B. S. Ghanem; Y. Wang; I. Pinnau, Polymers 2019, 11 (2), 361, https://doi.org/10.3390/polym11020361.
  26. Permeation, sorption, and diffusion of CO2-CH4 mixtures in polymers of intrinsic microporosity: The effect of intrachain rigidity on plasticization resistance. G. Genduso; Y. Wang; B. S. Ghanem; I. Pinnau, J. Membr. Sci. 2019, 584, 100-109, https://doi.org/10.1016/j.memsci.2019.05.014.
  27. Investigating the factors that influence resistance rise of PIM-1 membranes in nonaqueous electrolytes. M. Gigli; J. A. Kowalski; B. J. Neyhouse; A. D’Epifanio; F. R. Brushett; S. Licoccia, Electrochem. Commun. 2019, 107, 106530, https://doi.org/10.1016/j.elecom.2019.106530.
  28. Chemically stable polyarylether-based covalent organic frameworks. X. Y. Guan; H. Li; Y. C. Ma; M. Xue; Q. R. Fang; Y. S. Yan; V. Valtchev; S. L. Qiu, Nature Chemistry 2019, 11 (6), 587-594, https://doi.org/10.1038/s41557-019-0238-5.
  29. A molecular simulation protocol for membrane pervaporation. K. M. Gupta; J. Liu; J. Jiang, J. Membr. Sci. 2019, 572, 676-682, https://doi.org/10.1016/j.memsci.2018.11.052.
  30. A molecular simulation study for efficient separation of 2,5-furandiyldimethanamine by a microporous polyarylate membrane. K. M. Gupta; J. Liu; J. Jiang, Polymer 2019, 175, 8-14, https://doi.org/10.1016/j.polymer.2019.04.066.
  31. Nanostructured membrane materials for CO2 capture: a critical review. Y. Han; Z. Zhang, J. Nanosci. Nanotechnol. 2019, 19 (6), 3173-3179, https://doi.org/10.1166/jnn.2019.16584.
  32. Polymers with Side Chain Porosity for Ultrapermeable and Plasticization Resistant Materials for Gas Separations. Y. He; F. M. Benedetti; S. Lin; C. Liu; Y. Zhao; H.-Z. Ye; T. Van Voorhis; M. G. De Angelis; T. M. Swager; Z. P. Smith, Adv. Mater. 2019, 31 (21), 1807871, https://doi.org/10.1002/adma.201807871.
  33. Molecular-level control over ion transport in membranes comprised of polymers of intrinsic microporosity. B. Helms; M. Baran; S. Sahu; M. Carrington; S. Meckler; M. Braten; A. Baskin; D. Prendergast, Abstracts of Papers of the American Chemical Society 2019, 257,
  34. A Facile Synthesis of (PIM-Polyimide)-(6FDA-Durene-Polyimide) Copolymer as Novel Polymer Membranes for CO2 Separation. I. Hossain; A. Z. Al Munsur; T.-H. Kim, Membranes 2019, 9 (9), 113, https://doi.org/10.3390/membranes9090113.
  35. PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances. I. Hossain; S. Y. Nam; C. Rizzuto; G. Barbieri; E. Tocci; T.-H. Kim, J. Membr. Sci. 2019, 574, 270-281, https://doi.org/10.1016/j.memsci.2018.12.084.
  36. Solvation effects on the permeation and aging performance of PIM-1-based MMMs for gas separation. R. Hou; S. J. Smith; C. D. Wood; R. J. Mulder; C. H. Lau; H. Wang; M. R. Hill, Acs Appl Mater Inter 2019, 11 (6), 6502-6511, https://doi.org/10.1021/acsami.8b19207.
  37. Influence of Chemical Modification on CO<sub>2</sub> Permeability of Polymers of Intrinsic Microporosity / Silica Nanoparticles Composite Membranes. A. Imai; H. Mikami; E. Ito; M. Tanaka; M. Yamato; H. Kawakami, J. Photopolym. Sci. Technol. 2019, 32 (3), 457-461, https://doi.org/10.2494/photopolymer.32.457.
  38. Nanofiltration membranes with enhanced microporosity and inner-pore interconnectivity for water treatment: Excellent balance between permeability and selectivity. C. Jiang; L. Tian; Y. Hou; Q. J. Niu, J. Membr. Sci. 2019, 586, 192-201, https://doi.org/10.1016/j.memsci.2019.05.075.
  39. Fabrication of Polymer-Supported Metal Organic Framework Membrane and Its Gas Separation Performance. T. B. Jingru Fu, Shilun Qiu, Acta Physico-Chimica Sinica 2019, 1901079-0, https://doi.org/10.3866/pku.whxb201901079.
  40. Streamlined Fabrication of Asymmetric Carbon Molecular Sieve Hollow Fiber Membranes. M. L. Jue; Y. Ma; R. P. Lively, ACS Applied Polymer Materials 2019, 1 (8), 1960-1964, https://doi.org/10.1021/acsapm.9b00567.
  41. Tunable Porosity in Fused Filament 3D-Printed Blends of Intrinsically Porous Polymer and Thermoplastic Aliphatic Polyesters Polycaprolactone and Polylactic Acid. Z. C. Kennedy; J. F. Christ; B. W. Arey; L. R. Zhong; C. A. Barrett, Acs Applied Polymer Materials 2019, 1 (3), 482-492, https://doi.org/10.1021/acsapm.8b00172.
  42. Mixed matrix membranes based on MIL-101 metal–organic frameworks in polymer of intrinsic microporosity PIM-1. M. Khdhayyer; A. F. Bushell; P. M. Budd; M. P. Attfield; D. Jiang; A. D. Burrows; E. Esposito; P. Bernardo; M. Monteleone; A. Fuoco; G. Clarizia; F. Bazzarelli; A. Gordano; J. C. Jansen, Sep. Purif. Technol. 2019, 212, 545-554, https://doi.org/10.1016/j.seppur.2018.11.055.
  43. The potential of polymers of intrinsic microporosity (PIMs) and PIM/graphene composites for pervaporation membranes. R. A. Kirk; M. Putintseva; A. Volkov; P. M. Budd, BMC Chemical Engineering 2019, 1 (1), 18, https://doi.org/10.1186/s42480-019-0018-4.
  44. Aromatic polymers made by reductive polydehalogenation of oligocyclic monomers as conjugated polymers of intrinsic microporosity (C-PIMs). P. Klein; H. J. Jötten; C. M. Aitchison; R. Clowes; E. Preis; A. I. Cooper; R. S. Sprick; U. Scherf, Polymer Chemistry 2019, 10 (38), 5200-5205, https://doi.org/10.1039/C9PY00869A.
  45. An Atomistic Simulation Study on POC/PIM Mixed-Matrix Membranes for Gas Separation. X. Kong; J. Liu, The Journal of Physical Chemistry C 2019, 123 (24), 15113-15121, https://doi.org/10.1021/acs.jpcc.9b03318.
  46. Aging: Degradation of Permeability in Microporous Polymeric Membranes. K. Kyunam; K. Dong-Yeun, Membrane Journal 2019, 29 (4), 191-201,
  47. Tuning the Molecular Weights, Chain Packing, and Gas-Transport Properties of CANAL Ladder Polymers by Short Alkyl Substitutions. H. W. H. Lai; F. M. Benedetti; Z. Jin; Y. C. Teo; A. X. Wu; M. G. D. Angelis; Z. P. Smith; Y. Xia, Macromolecules 2019, 52 (16), 6294-6302, https://doi.org/10.1021/acs.macromol.9b01155.
  48. Preparation of polymer of intrinsic microporosity composite membranes and their applications for butanol recovery. Y. Lan; P. Peng, J. Appl. Polym. Sci. 2019, 136 (1), 46912, https://doi.org/10.1002/app.46912.
  49. Gas sorption in polymers of intrinsic microporosity: The difference between solubility coefficients determined via time-lag and direct sorption experiments. M. Lanc; K. Pilnacek; C. R. Mason; P. M. Budd; Y. Rogan; R. Malpass-Evans; M. Carta; B. C. Gandara; N. B. McKeown; J. C. Jansen; O. Vopicka; K. Friess, J. Membr. Sci. 2019, 570, 522-536, https://doi.org/10.1016/j.memsci.2018.10.048.
  50. Preparation and Gas Separation Properties of Triptycene-Based Microporous Polyimide. F. F. Li; C. L. Zhang; Y. X. Weng, Macromol. Chem. Phys. 2019, 220 (10), https://doi.org/10.1002/macp.201900047.
  51. Microporous polyimides containing bulky tetra-o-isopropyl and naphthalene groups for gas separation membranes. T. Li; J. Liu; S. Zhao; Z. Chen; H. Huang; R. Guo; Y. Chen, J. Membr. Sci. 2019, 585, 282-288, https://doi.org/10.1016/j.memsci.2019.05.003.
  52. Molecular Design of Microporous Polymer Membranes for the Upgrading of Natural Gas. J. Liu; J. Jiang, The Journal of Physical Chemistry C 2019, 123 (11), 6607-6615, https://doi.org/10.1021/acs.jpcc.8b12422.
  53. Microporous benzimidazole-linked polymer and its derivatives for organic solvent nanofiltration. J. Liu; J. Jiang, Polymer 2019, 185, 121932, https://doi.org/10.1016/j.polymer.2019.121932.
  54. A molecular simulation protocol for swelling and organic solvent nanofiltration of polymer membranes. J. Liu; Q. Xu; J. Jiang, J. Membr. Sci. 2019, 573, 639-646, https://doi.org/10.1016/j.memsci.2018.12.035.
  55. A hydrophobic pervaporation membrane with hierarchical microporosity for high-efficient dehydration of alcohols. P. Liu; M. Chen; Y. Ma; C. Hu; Q. Zhang; A. Zhu; Q. Liu, Chem. Eng. Sci. 2019, 206, 489-498, https://doi.org/10.1016/j.ces.2019.05.057.
  56. High Performance of PIM-1/ZIF-8 Composite Membranes for O2/N2 Separation. Y. Liu; J. Zhang; X. Tan, ACS Omega 2019, 4 (15), 16572-16577, https://doi.org/10.1021/acsomega.9b02363.
  57. A bio-inspired O2-tolerant catalytic CO2 reduction electrode. X. Lu; Z. Jiang; X. Yuan; Y. Wu; R. Malpass-Evans; Y. Zhong; Y. Liang; N. B. McKeown; H. Wang, Science Bulletin 2019, 64 (24), 1890-1895, https://doi.org/10.1016/j.scib.2019.04.008.
  58. Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation. L. Ma; C. Fu; L. Li; K. S. Mayilvahanan; T. Watkins; B. R. Perdue; K. R. Zavadil; B. A. Helms, Nano Lett. 2019, 19 (2), 1387-1394, https://doi.org/10.1021/acs.nanolett.8b05101.
  59. Creation of Well-Defined “Mid-Sized” Micropores in Carbon Molecular Sieve Membranes. Y. Ma; M. L. Jue; F. Zhang; R. Mathias; H. Y. Jang; R. P. Lively, Angew. Chem. Int. Ed. 2019, 58 (38), 13259-13265, https://doi.org/10.1002/anie.201903105.
  60. Triphasic Nature of Polymers of Intrinsic Microporosity Induces Storage and Catalysis Effects in Hydrogen and Oxygen Reactivity at Electrode Surfaces. E. Madrid; J. P. Lowe; K. J. Msayib; N. B. McKeown; Q. Song; G. A. Attard; T. Düren; F. Marken, ChemElectroChem 2019, 6 (1), 252-259, https://doi.org/10.1002/celc.201800177.
  61. Polymer of Intrinsic Microporosity (PIM-7) Coating Affects Triphasic Palladium Electrocatalysis. A. Mahajan; S. K. Bhattacharya; S. Rochat; A. D. Burrows; P. J. Fletcher; Y. Rong; A. B. Dalton; N. B. McKeown; F. Marken, ChemElectroChem 2019, 6 (16), 4307-4317, https://doi.org/10.1002/celc.201801359.
  62. Polymers of Intrinsic Microporosity in Triphasic Electrochemistry: Perspectives. F. Marken; E. Madrid; Y. Zhao; M. Carta; N. B. McKeown, ChemElectroChem 2019, 6 (17), 4332-4342, https://doi.org/10.1002/celc.201900717.
  63. Economic Framework of Membrane Technologies for Natural Gas Applications. V. Martin-Gil; M. Z. Ahmad; R. Castro-Munoz; V. Fila, Separation and Purification Reviews 2019, 48 (4), 298-324, https://doi.org/10.1080/15422119.2018.1532911.
  64. Vapor Phase Infiltration of Metal Oxides into Nanoporous Polymers for Organic Solvent Separation Membranes. E. K. McGuinness; F. Zhang; Y. Ma; R. P. Lively; M. D. Losego, Chem. Mater. 2019, 31 (15), 5509-5518, https://doi.org/10.1021/acs.chemmater.9b01141.
  65. Analysis and utilization of cryogenic sorption isotherms for high free volume glassy polymers. M. Minelli; B. R. Pimentel; M. L. Jue; R. P. Lively; G. C. Sarti, Polymer 2019, 170, 157-167, https://doi.org/10.1016/j.polymer.2019.03.012.
  66. Polymer-Based Shaping Strategy for Zeolite Templated Carbons (ZTC) and Their Metal Organic Framework (MOF) Composites for Improved Hydrogen Storage Properties. L. Y. Molefe; N. M. Musyoka; J. Ren; H. W. Langmi; M. Mathe; P. G. Ndungu, Frontiers in Chemistry 2019, 7 (864), https://doi.org/10.3389/fchem.2019.00864.
  67. Synthesis of porous polymer-based metal–organic frameworks monolithic hybrid composite for hydrogen storage application. L. Y. Molefe; N. M. Musyoka; J. Ren; H. W. Langmi; P. G. Ndungu; R. Dawson; M. Mathe, J Mater Sci 2019, 54 (9), 7078-7086, https://doi.org/10.1007/s10853-019-03367-1.
  68. An artificial solid interphase with polymers of intrinsic microporosity for highly stable Li metal anodes. G. H. Moon; H. J. Kim; I. S. Chae; S. C. Park; B. S. Kim; J. Jang; H. Kim; Y. S. Kang, Chem. Commun. 2019, 55 (44), 6313-6316, https://doi.org/10.1039/C9CC01329F.
  69. Thermal Cross Linking of Novel Azide Modified Polymers of Intrinsic Microporosity—Effect of Distribution and the Gas Separation Performance. S. Neumann; G. Bengtson; D. Meis; V. Filiz, Polymers 2019, 11 (8), 1241, https://doi.org/10.3390/polym11081241.
  70. Thin Composite Carbon Molecular Sieve Membranes from a Polymer of Intrinsic Microporosity Precursor. W. Ogieglo; A. Furchner; X. Ma; K. Hazazi; A. T. Alhazmi; I. Pinnau, Acs Appl Mater Inter 2019, 11 (20), 18770-18781, https://doi.org/10.1021/acsami.9b04602.
  71. Hierarchical Porous and Zinc-Ion-Crosslinked PIM-1 Nanocomposite as a CO2 Cycloaddition Catalyst with High Efficiency. Y. Pan; X. Zhai; J. Yin; T. Zhang; L. Ma; Y. Zhou; Y. Zhang; J. Meng, Chemsuschem 2019, 12 (10), 2231-2239, https://doi.org/10.1002/cssc.201803066.
  72. Atomic Layer Deposition of NiOOH/Ni(OH)2 on PIM-1-Based N-Doped Carbon Nanofibers for Electrochemical Water Splitting in Alkaline Medium. B. Patil; B. Satilmis; M. A. Khalily; T. Uyar, Chemsuschem 2019, 12 (7), 1469-1477, https://doi.org/10.1002/cssc.201802500.
  73. Polymer with Intrinsic Microporosity PIM-1: New Methods of Synthesis and Gas Transport Properties. I. I. Ponomarev; D. Y. Razorenov; I. V. Blagodatskikh; A. V. Muranov; L. E. Starannikova; A. Y. Alent’ev; R. Y. Nikiforov; Y. P. Yampol’skii, Polymer Science, Series B 2019, 61 (5), 605-612, https://doi.org/10.1134/s1560090419050142.
  74. New Gas-Diffusion Electrode Based on Heterocyclic Microporous Polymer PIM-1 for High-Temperature Polymer Electrolyte Membrane Fuel Cell. I. I. Ponomarev; K. M. Skupov; I. I. Ponomarev; D. Y. Razorenov; Y. A. Volkova; V. G. Basu; O. M. Zhigalina; S. S. Bukalov; Y. M. Volfkovich; V. E. Sosenkin, Russ. J. Electrochem. 2019, 55 (6), 552-557, https://doi.org/10.1134/s1023193519060156.
  75. Layer-by-layer assembly of a polymer of intrinsic microporosity: targeting the CO2/N2 separation problem. N. B. Pramanik; S. L. Regen, Chem. Commun. 2019, 55 (30), 4347-4350, https://doi.org/10.1039/C9CC01535C.
  76. Microporous Triptycene-Based Affinity Materials on Quartz Crystal Microbalances for Tracing of Illicit Compounds. E. Prantl; B. Kohl; D. Ryvlin; P. Biegger; H. Wadepohl; F. Rominger; U. H. F. Bunz; M. Mastalerz; S. R. Waldvogel, ChemPlusChem 2019, 84 (9), 1239-1244, https://doi.org/10.1002/cplu.201900189.
  77. An insight into the effect of azobenzene functionalities studied in UiO-66 frameworks for low energy CO2 capture and CO2/N-2 membrane separation. N. Prasetya; B. P. Ladewig, J Mater Chem A 2019, 7 (25), 15164-15172, https://doi.org/10.1039/c9ta02096a.
  78. An Interfacial Layer Based on Polymers of Intrinsic Microporosity to Suppress Dendrite Growth on Li Metal Anodes. L. Qi; L. Shang; K. Wu; L. Qu; H. Pei; W. Li; L. Zhang; Z. Wu; H. Zhou; N. B. McKeown; W. Zhang; Z. Yang, Chemistry – A European Journal 2019, 25 (52), 12052-12057, https://doi.org/10.1002/chem.201902124.
  79. The Effect of Thermal Treatment on the Hydrogen-Storage Properties of PIM-1. D. Ramimoghadam; S. E. Boyd; C. L. Brown; E. Mac A. Gray; C. J. Webb, ChemPhysChem 2019, 20 (12), 1613-1623, https://doi.org/10.1002/cphc.201900222.
  80. Hydrogen uptake properties of a nanoporous PIM-1-polyaniline nanocomposite polymer. D. Ramimoghadam; C. L. Brown; S. E. Boyd; E. M. Gray; C. J. Webb, J Mater Chem A 2019, 7 (39), 22436-22443, https://doi.org/10.1039/c9ta04844h.
  81. Postsynthetic Modification of a Network Polymer of Intrinsic Microporosity and Its Hydrogen Adsorption Properties. D. Ramimoghadam; L. Naheed; S. E. Boyd; C. L. Brown; T. A. Webb; E. MacA. Gray; C. J. Webb, The Journal of Physical Chemistry C 2019, 123 (12), 6998-7009, https://doi.org/10.1021/acs.jpcc.8b11969.
  82. UV and chemical modifications of polymer of Intrinsic Microporosity 1 to develop vibrational spectroscopic probes of surface chemistry and porosity. P. Ray; D. Gidley; J. V. Badding; A. D. Lueking, Microporous Mesoporous Mater. 2019, 277, 29-35, https://doi.org/10.1016/j.micromeso.2018.09.013.
  83. Modelling Mixed-Gas Sorption in Glassy Polymers for CO2 Removal: A Sensitivity Analysis of the Dual Mode Sorption Model. E. Ricci; M. G. De Angelis, Membranes 2019, 9 (1), 8, https://doi.org/10.3390/membranes9010008.
  84. Sorption of CO2/CH4 mixtures in TZ-PIM, PIM-1 and PTMSP: Experimental data and NELF-model analysis of competitive sorption and selectivity in mixed gases. E. Ricci; A. E. Gemeda; N. Du; N. Li; M. G. De Angelis; M. D. Guiver; G. C. Sarti, J. Membr. Sci. 2019, 585, 136-149, https://doi.org/10.1016/j.memsci.2019.05.026.
  85. Assessment of the long-term stability of the polymer of intrinsic microporosity PIM-1 for hydrogen storage applications. S. Rochat; K. Polak-Kraśna; M. Tian; T. J. Mays; C. R. Bowen; A. D. Burrows, Int. J. Hydrogen Energy 2019, 44 (1), 332-337, https://doi.org/10.1016/j.ijhydene.2018.02.175.
  86. Charge Transfer Hybrids of Graphene Oxide and the Intrinsically Microporous Polymer PIM-1. Y. Rong; M. J. Large; M. Tripathi; S. P. Ogilvie; A. Amorim Graf; B. Mao; J. Tunesi; J. P. Salvage; A. A. K. King; A. Pasquazi; M. Peccianti; R. Malpass-Evans; N. B. McKeown; F. Marken; A. B. Dalton, Acs Appl Mater Inter 2019, 11 (34), 31191-31199, https://doi.org/10.1021/acsami.9b09832.
  87. Superhigh CO2-Permeable Mixed Matrix Membranes Composed of a Polymer of Intrinsic Microporosity (PIM-1) and Surface-Modified Silica Nanoparticles. N. Sakaguchi; M. Tanaka; M. Yamato; H. Kawakami, ACS Applied Polymer Materials 2019, 1 (9), 2516-2524, https://doi.org/10.1021/acsapm.9b00624.
  88. Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering. H. Sanaeepur; A. E. Amooghin; S. Bandehali; A. Moghadassi; T. Matsuura; B. Van der Bruggen, Prog. Polym. Sci. 2019, 91, 80-125, https://doi.org/10.1016/j.progpolymsci.2019.02.001.
  89. Polymer engineering by blending PIM-1 and 6FDA-DAM for ZIF-8 containing mixed matrix membranes applied to CO2 separations. J. Sanchez-Lainez; A. Pardillos-Ruiz; M. Carta; R. Malpass-Evans; N. B. McKeown; C. Tellez; J. Coronas, Sep. Purif. Technol. 2019, 224, 456-462, https://doi.org/10.1016/j.seppur.2019.05.035.
  90. Amidoxime functionalized Polymers of Intrinsic Microporosity (PIM-1) electrospun ultrafine fibers for rapid removal of uranyl ions from water. B. Satilmis; T. Isik; M. M. Demir; T. Uyar, Appl. Surf. Sci. 2019, 467, 648-657, https://doi.org/10.1016/j.apsusc.2018.10.210.
  91. Development of superhydrophobic electrospun fibrous membrane of polymers of intrinsic microporosity (PIM-2). B. Satilmis; T. Uyar, Eur. Polym. J. 2019, 112, 87-94, https://doi.org/10.1016/j.eurpolymj.2018.12.029.
  92. Fabrication of Thermally Crosslinked Hydrolyzed Polymers of Intrinsic Microporosity (HPIM)/Polybenzoxazine Electrospun Nanofibrous Membranes. B. Satilmis; T. Uyar, Macromol. Chem. Phys. 2019, 220 (1), 1800326, https://doi.org/10.1002/macp.201800326.
  93. Polymer of Intrinsic Microporosity (PIM-1) Membranes Treated with Supercritical CO2. C. A. Scholes; S. Kanehashi, Membranes 2019, 9 (3), 41, https://doi.org/10.3390/membranes9030041.
  94. Polymers of Intrinsic Microporosity Chemical Sorbents Utilizing Primary Amine Appendance Through Acid–Base and Hydrogen-Bonding Interactions. A. K. Sekizkardes; S. Hammache; J. S. Hoffman; D. Hopkinson, Acs Appl Mater Inter 2019, 11 (34), 30987-30991, https://doi.org/10.1021/acsami.9b09856.
  95. Study of Microporosity of Polymer Glasses Using Techniques of Positron Annihilation and Low-Temperature Sorption of Carbon Dioxide. V. P. Shantarovich; V. G. Bekeshev; M. V. Bermeshev; D. A. Alentiev; V. W. Gustov; E. V. Belousova; I. B. Kevdina; Y. A. Novikov, High Energ. Chem. 2019, 53 (4), 276-281, https://doi.org/10.1134/S0018143919040118.
  96. SIFSIX-3-Zn/PIM-1 mixed matrix membranes with enhanced permeability for propylene/propane separation. Q. Shen; S. Cong; R. He; Z. Wang; Y. Jin; H. Li; X. Cao; J. Wang; B. Van der Bruggen; Y. Zhang, J. Membr. Sci. 2019, 588, 117201, https://doi.org/10.1016/j.memsci.2019.117201.
  97. Unusual Structural Changes of PIM-1 Polymer Detected by Means of Chromatographic Technique. V. E. Shiryaeva; T. P. Popova; A. Y. Kanateva; A. A. Korolev; A. A. Kurganov, Polymer Science, Series C 2019, 61 (1), 198-204, https://doi.org/10.1134/s1811238219010168.
  98. Stationary Phases Based on PIM-1 Polymer of Intrinsic Microporosity for Gas Chromatography. V. E. Shiryaeva; T. P. Popova; A. Y. Kant’eva; A. A. Korolev; A. A. Kurganov, Russian Journal of Physical Chemistry A 2019, 93 (5), 946-950, https://doi.org/10.1134/s0036024419050261.
  99. Organopolymer with dual chromophores and fast charge-transfer properties for sustainable photocatalysis. J. D. Smith; A. M. Jamhawi; J. B. Jasinski; F. Gallou; J. Ge; R. Advincula; J. Liu; S. Handa, Nature Communications 2019, 10 (1), 1837, https://doi.org/10.1038/s41467-019-09316-5.
  100. Efficient organic pollutant degradation under visible-light using functional polymers of intrinsic microporosity. Q. Tang; J. Gong; Q. Zhao, Catalysis Science & Technology 2019, 9 (19), 5383-5393, https://doi.org/10.1039/C9CY01338E.
  101. Synthesis and modification of new polymers of intrinsic microporosity For liquid separations. K. Thompson; N. Bruno; R. Mathias; B. Hamlett; Y. Ma; R. Lively; M. G. Finn, Abstracts of Papers of the American Chemical Society 2019, 257,
  102. Nanoporous polymer-based composites for enhanced hydrogen storage. M. Tian; S. Rochat; K. Polak-Kraśna; L. T. Holyfield; A. D. Burrows; C. R. Bowen; T. J. Mays, Adsorption 2019, 25 (4), 889-901, https://doi.org/10.1007/s10450-019-00065-x.
  103. Polymer of intrinsic microporosity-based macroporous membrane with high thermal stability as a Li-ion battery separator. Y. Tian; C. Lin; Z. Wang; J. Jin, Rsc Adv 2019, 9 (37), 21539-21543, https://doi.org/10.1039/C9RA02308A.
  104. Electrospinning of uniform nanofibers of Polymers of Intrinsic Microporosity (PIM-1): The influence of solution conductivity and relative humidity. F. Topuz; B. Satilmis; T. Uyar, Polymer 2019, 178, 121610, https://doi.org/10.1016/j.polymer.2019.121610.
  105. A review of different synthetic approaches of amorphous intrinsic microporous polymers and their potential applications in membrane-based gases separation. M. Usman; A. Ahmed; B. Yu; Q. Peng; Y. Shen; H. Cong, Eur. Polym. J. 2019, 120, 109262, https://doi.org/10.1016/j.eurpolymj.2019.109262.
  106. Chiral Bifunctional Thioureas and Squaramides Grafted into Old Polymers of Intrinsic Microporosity for Novel Applications. M. Valle; L. Martín; A. Maestro; J. M. Andrés; R. Pedrosa, Polymers 2019, 11 (1), 13, https://doi.org/10.3390/polym11010013.
  107. Toward enhanced conductivity of high-temperature proton exchange membranes: development of novel PIM-1 reinforced PBI alloy membranes. P. Wang; Z. Liu; X. Li; J. Peng; W. Hu; B. Liu, Chem. Commun. 2019, 55 (46), 6491-6494, https://doi.org/10.1039/C9CC02102G.
  108. Aromatic polyimides containing pyridine and spirocyclic units: Preparation, thermal and gas separation properties. S. Wang; S. Ma; H. He; W. Ai; D. Wang; X. Zhao; C. Chen, Polymer 2019, 168, 199-208, https://doi.org/10.1016/j.polymer.2019.02.046.
  109. Hierarchically micro-mesoporous β-cyclodextrin polymers used for ultrafast removal of micropollutants from water. Z. Wang; F. Cui; Y. Pan; L. Hou; B. Zhang; Y. Li; L. Zhu, Carbohydr. Polym. 2019, 213, 352-360, https://doi.org/10.1016/j.carbpol.2019.03.021.
  110. Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination. Z. Wang; S. Guo; B. Zhang; L. Zhu, J. Membr. Sci. 2019, 592, 117375, https://doi.org/10.1016/j.memsci.2019.117375.
  111. Effects of functionalization on the nanofiltration performance of PIM-1: Molecular simulation investigation. Q. Xu; J. Jiang, J. Membr. Sci. 2019, 591, 117357, https://doi.org/10.1016/j.memsci.2019.117357.
  112. Preparation and characterization of PIM-1 and PIM-1/PU-blend membranes for pervaporation separation of phenol from water. X. Yan; H. Ye; C. Dong; Y. Wu; S. Shi, Desalin. Water Treat. 2019, 138, 68-79, https://doi.org/10.5004/dwt.2019.23320.
  113. Multimodal porous and nitrogen-functionalized electrode based on graphite felt modified with carbonized porous polymer skin layer for all-vanadium redox flow battery. D. S. Yang; J. H. Han; J. W. Jeon; J. Y. Lee; D. G. Kim; D. H. Seo; B. G. Kim; T. H. Kim; Y. T. Hong, Materials Today Energy 2019, 11, 159-165, https://doi.org/10.1016/j.mtener.2018.11.003.
  114. Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation. S. Yi; B. Ghanem; Y. Liu; I. Pinnau; W. J. Koros, Science Advances 2019, 5 (5), eaaw5459, https://doi.org/10.1126/sciadv.aaw5459.
  115. Effect of Backbone Rigidity on the Glass Transition of Polymers of Intrinsic Microporosity Probed by Fast Scanning Calorimetry. H. Yin; B. Yang; Y. Z. Chua; P. Szymoniak; M. Carta; R. Malpass-Evans; N. B. McKeown; W. J. Harrison; P. M. Budd; C. Schick; M. Böhning; A. Schönhals, Acs Macro Lett 2019, 8 (8), 1022-1028, https://doi.org/10.1021/acsmacrolett.9b00482.
  116. Probing the glass transition temperature of polymers of intrinsic microporosity (PIMs) by fast scanning calorimeter. H. J. Yin; Y. Z. Chua; B. Yang; C. Schick; P. Szymoniak; M. Boehning; A. Schonhals, Abstracts of Papers of the American Chemical Society 2019, 257,
  117. Molecular mobility and charge transport in Polymers of Intrinsic Microporosity (PIMs) as revealed by dielectric spectroscopy. H. J. Yin; A. Schonhals; M. Boehning, Abstracts of Papers of the American Chemical Society 2019, 257,
  118. Mixed matrix membranes derived from nanoscale porous organic frameworks for permeable and selective CO2 separation. G. Yu; Y. Li; Z. Wang; T. X. Liu; G. Zhu; X. Zou, J. Membr. Sci. 2019, 591, 117343, https://doi.org/10.1016/j.memsci.2019.117343.
  119. Constructing Connected Paths between UiO-66 and PIM-1 to Improve Membrane CO2 Separation with Crystal-Like Gas Selectivity. G. L. Yu; X. Q. Zou; L. Sun; B. S. Liu; Z. Y. Wang; P. P. Zhang; G. S. Zhu, Adv. Mater. 2019, 31 (15), https://doi.org/10.1002/adma.201806853.
  120. High-performance microporous polymer membranes prepared by interfacial polymerization for gas separation. S. Yu; S. Li; Y. Liu; S. Cui; X. Shen, J. Membr. Sci. 2019, 573, 425-438, https://doi.org/10.1016/j.memsci.2018.12.029.
  121. Small-pore CAU-21 and porous PIM-1 in mixed-matrix membranes for improving selectivity and permeability in hydrogen separation. C. Zhang; B. S. Liu; G. M. Wang; G. L. Yu; X. Q. Zou; G. S. Zhu, Chem. Commun. 2019, 55 (49), 7101-7104, https://doi.org/10.1039/c9cc02537e.
  122. PIM-1/PDMS hybrid pervaporation membrane for high-efficiency separation of n-butanol-water mixture under low concentration. G. Zhang; H. Cheng; P. Su; X. Zhang; J. Zheng; Y. Lu; Q. Liu, Sep. Purif. Technol. 2019, 216, 83-91, https://doi.org/10.1016/j.seppur.2019.01.080.
  123. High-κ polymers of intrinsic microporosity: a new class of high temperature and low loss dielectrics for printed electronics. Z. Zhang; J. Zheng; K. Premasiri; M.-H. Kwok; Q. Li; R. Li; S. Zhang; M. H. Litt; X. P. A. Gao; L. Zhu, Materials Horizons 2019, https://doi.org/10.1039/C9MH01261C.
  124. Photoelectrochemistry of immobilised Pt@g-C3N4 mediated by hydrogen and enhanced by a polymer of intrinsic microporosity PIM-1. Y. Zhao; N. A. Al Abass; R. Malpass-Evans; M. Carta; N. B. McKeown; E. Madrid; P. J. Fletcher; F. Marken, Electrochem. Commun. 2019, 103, 1-6, https://doi.org/10.1016/j.elecom.2019.04.006.
  125. Membranes with Intrinsic Micro-Porosity: Structure, Solubility, and Applications. H. Zhou; W. Jin, Membranes 2019, 9 (1), 3, https://doi.org/10.3390/membranes9010003.
  126. High-performance functionalized polymer of intrinsic microporosity (PIM) composite membranes with thin and stable interconnected layer for organic solvent nanofiltration. S. Zhou; Y. Zhao; J. Zheng; S. Zhang, J. Membr. Sci. 2019, 591, 117347, https://doi.org/10.1016/j.memsci.2019.117347.
  127. Colorless Partially Alicyclic Polyimides Based on Troger’s Base Exhibiting Good Solubility and Dual Fluorescence/Phosphorescence Emission. Y. B. Zhuang; R. Orita; E. Fujiwara; Y. Zhang; S. Ando, Macromolecules 2019, 52 (10), 3813-3824, https://doi.org/10.1021/acs.macromol.9b00273.

 

2020

  1. Switching of the conformational flexibility of a diazacyclooctane-containing ladder polymer by coordination and elimination of a Lewis acid. F. Ishiwari; M. Ofuchi; K. Inoue; Y. Seib; T. Fukushima, Polymer Chemistry 2020, 11 (2), 236-240, https://doi.org/10.1039/c9py01104h.
  2. Nanofiltration membranes from crosslinked Troger’s base Polymers of Intrinsic Microporosity (PIMs). P. Agarwal; R. E. Hefner; S. Ge; I. Tomlinson; Y. Rao; T. Dikic, J. Membr. Sci. 2020, 595, 117501, https://doi.org/10.1016/j.memsci.2019.117501.
  3. P. M. Budd, Chapter 9 – Polymers of Intrinsic Microporosity and Their Potential in Process Intensification. In Sustainable Nanoscale Engineering, Szekely, G.; Livingston, A., Eds. Elsevier: 2020; pp 231-264.
  4. Comparison of pure and mixed gas permeation of the highly fluorinated polymer of intrinsic microporosity PIM-2 under dry and humid conditions: Experiment and modelling. A. Fuoco; B. Satilmis; T. Uyar; M. Monteleone; E. Esposito; C. Muzzi; E. Tocci; M. Longo; M. P. De Santo; M. Lanč; K. Friess; O. Vopička; P. Izák; J. C. Jansen, J. Membr. Sci. 2020, 594, 117460, https://doi.org/10.1016/j.memsci.2019.117460.
  5. Blend anion exchange membranes containing polymer of intrinsic microporosity for fuel cell application. S. Gong; L. Li; L. Ma; N. A. Qaisrani; J. Liu; G. He; F. Zhang, J. Membr. Sci. 2020, 595, 117541, https://doi.org/10.1016/j.memsci.2019.117541.
  6. Highly selective surface adsorption-induced efficient photodegradation of cationic dyes on hierarchical ZnO nanorod-decorated hydrolyzed PIM-1 nanofibrous webs. K. S. Ranjith; B. Satilmis; Y. S. Huh; Y.-K. Han; T. Uyar, J. Colloid Interface Sci. 2020, 562, 29-41, https://doi.org/10.1016/j.jcis.2019.11.096.
  7. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage (December, 10.1038/S41563-019-0536-8, 2019). R. Tan; A. Q. Wang; R. Malpass-Evans; R. Williams; E. W. Zhao; T. Liu; C. C. Ye; X. Q. Zhou; B. P. Darwich; Z. Y. Fan; L. Turcani; E. Jackson; L. J. Chen; S. Y. Chong; T. Li; K. E. Jelfs; A. I. Cooper; N. P. Brandon; C. P. Grey; N. B. McKeown; Q. L. Song, Nat Mater 2020, 19, 195-202, https://doi.org/10.1038/s41563-019-0593-z.
  8. Adamantane-grafted polymer of intrinsic microporosity with finely tuned interchain spacing for improved CO2 separation performance. Z. G. Wang; Q. Shen; J. C. Liang; Y. T. Zhang; J. Jin, Sep. Purif. Technol. 2020, 233, https://doi.org/10.1016/j.seppur.2019.116008.
  9. Accelerating CO2 capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework. X. Y. Wu; Y. X. Ren; G. M. Sui; G. Z. Wang; G. S. Xu; L. X. Yan; Y. Z. Wu; G. W. He; N. Nasir; H. Wu; Z. Y. Jiang, AlChE J. 2020, 66 (2), https://doi.org/10.1002/aic.16800.
  10. PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries. Q. Yang; W. Li; C. Dong; Y. Ma; Y. Yin; Q. Wu; Z. Xu; W. Ma; C. Fan; K. Sun, Journal of Energy Chemistry 2020, 42, 83-90, https://doi.org/10.1016/j.jechem.2019.06.012.
  11. Gas separation performance and mechanical properties of thermally-rearranged polybenzoxazoles derived from an intrinsically microporous dihydroxyl-functionalized triptycene diamine-based polyimide. A. Yerzhankyzy; B. S. Ghanem; Y. Wang; N. Alaslai; I. Pinnau, J. Membr. Sci. 2020, 595, 117512, https://doi.org/10.1016/j.memsci.2019.117512.