PIMs Papers

Papers dealing directly with PIMs published up to the end of 2016. For more recent publications see PIMs News.  To access the paper paste the DOI number (e.g. 10.1039/b008508l) into your web browser.

PIMs Prehistory

[1] Novel spiro-polymers with enhanced solubility, S. Makhseed, N. B. McKeown, Chem. Commun. 1999, 255-256,

[2] Synthetic strategies towards macrodiscotic materials. Can a new dimension be added to liquid crystal polymers, K. J. Msayib, S. Makhseed, N. B. McKeown, J. Mater. Chem. 2001, 11, 2784-2789,

[3] N. B. McKeown, H. Li, S. Makhseed, Towards phthalocyanine network polymers for heterogeneous catalysis, in Supported Catalysts and their Applications (Eds.: D. C. Sherrington, A. P. Kybett), RSC, Cambridge, 2001, pp. 214-217.

[4] Porphyrin-based nanoporous network polymers, N. B. McKeown, S. Hanif, K. Msayib, C. E. Tattershall, P. M. Budd, Chem. Commun. 2002, 2782-2783,

[5] Phthalocyanine-based nanoporous network polymers, N. B. McKeown, S. Makhseed, P. M. Budd, Chem. Commun. 2002, 2780-2781,

[6] A nanoporous network polymer derived from hexaazatrinaphthylene with potential as an adsorbent and catalyst support, P. M. Budd, B. Ghanem, K. Msayib, N. B. McKeown, C. Tattershall, J. Mater. Chem. 2003, 13, 2721-2726,

2004

[7] Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials, P. M. Budd, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, C. E. Tattershall, Chem. Commun. 2004, 230-231, 10.1039/b311764b.

[8] Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity, P. M. Budd, E. S. Elabas, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, C. E. Tattershall, D. Wang, Advanced Materials 2004, 16, 456-+, 10.1002/adma.200306053.

2005

[9] Free volume and intrinsic microporosity in polymers, P. M. Budd, N. B. McKeown, D. Fritsch, J. Mater. Chem. 2005, 15, 1977-1986, 10.1039/b417402j.

[10] Gas separation membranes from polymers of intrinsic microporosity, P. M. Budd, K. J. Msayib, C. E. Tattershall, B. S. Ghanem, K. J. Reynolds, N. B. McKeown, D. Fritsch, Journal of Membrane Science 2005, 251, 263-269, 10.1016/j.memsci.2005.01.009.

[11] Cyclic ladder polymers by polycondensation of silylated tetrahydroxy-tetramethylspirobisindane with 1,4-dicyanotetrafluorobenzene, H. R. Kricheldorf, D. Fritsch, L. Vakhtangishvili, G. Schwarz, Macromolecular Chemistry and Physics 2005, 206, 2239-2247, 10.1002/macp.200500280.

[12] Microporous polymer material, N. B. McKeown, P. M. Budd, B. Ghanem, K. Msayib, International patent PCT WO 2005/012397 2005,

[13] Polymers of Intrinsic Microporosity (PIMs): Bridging the Void between Microporous and Polymeric Materials, N. B. McKeown, P. M. Budd, K. J. Msayib, B. S. Ghanem, H. J. Kingston, C. E. Tattershall, S. Makhseed, K. J. Reynolds, D. Fritsch, Chemistry-a European Journal 2005, 11, 2610-2620, 10.1002/chem.200400860.

[14] Polymers of intrinsic microporosity (PIMs): High free volume polymers for membrane applications, P. M. Budd, N. B. McKeown, D. Fritsch, Macromolecular Symposia 2006, 245, 403-405, 10.1002/masy.200651356.

2006

[15] Cyclic ladder polymers based on 5,5 ‘, 6,6 ‘-tetrahydroxy-3,3,3 ‘, 3 ‘-tetramethylspirobisindane and 2,3,5,6-tetrafluoropyridines, H. R. Kricheldorf, D. Fritsch, L. Vakhtangishvili, N. Lomadze, G. Schwarz, Macromolecules 2006, 39, 4990-4998, 10.1021/ma051398s.

[16] Cyclic and Telechelic Ladder Polymers Derived from Tetrahydroxytetramethylspirobisindane and 1,4-dicyanotetrafluorobenzene, H. R. Kricheldorf, N. Lomadze, D. Fritsch, G. Schwarz, Journal of Polymer Science Part a-Polymer Chemistry 2006, 44, 5344-5352, 10.1002/pola.21627.

[17] Multicyclic polyethers derived from 1,4-dicyanotetrafluorobenzene and flexible diphenols, H. R. Kricheldorf, J. Schellenberg, G. Schwarz, Macromolecules 2006, 39, 6445-6450, 10.1021/ma0608951.

[18] Adsorption studies of a microporous phthalocyanine network polymer, A. V. Maffei, P. M. Budd, N. B. McKeown, Langmuir 2006, 22, 4225-4229, 10.1021/la060091z.

[19] Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage, N. B. McKeown, P. M. Budd, Chemical Society Reviews 2006, 35, 675-683, 10.1039/b600349d.

[20] Towards polymer-based hydrogen storage materials: Engineering ultramicroporous cavities within polymers of intrinsic microporosity, N. B. McKeown, B. S. Ghanem, K. J. Msayib, P. M. Budd, C. E. Tattershall, K. Mahmood, S. Tan, D. Book, H. W. Langmi, A. Walton, Angewandte Chemie-International Edition 2006, 45, 1804-1807, 10.1002/anie.200504241.

[21] Polymers with intrinsic microporosity engineered for hydrogen storage, S. Trohalaki, Mrs Bulletin 2006, 31, 366-366,

2007

[22] The potential of organic polymer-based hydrogen storage materials, P. M. Budd, A. Butler, J. Selbie, K. Mahmood, N. B. McKeown, B. Ghanem, K. Msayib, D. Book, A. Walton, Physical Chemistry Chemical Physics 2007, 9, 1802-1808, 10.1039/b618053a.

[23] Unusual temperature dependence of the positron lifetime in a polymer of intrinsic microporosity, R. L. de Miranda, J. Kruse, K. Raetzke, F. Faupel, D. Fritsch, V. Abetz, P. M. Budd, J. D. Selbie, N. B. McKeown, B. S. Ghanem, Physica Status Solidi-Rapid Research Letters 2007, 1, 190-192, 10.1002/pssr.200701116.

[24] A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption, B. S. Ghanem, K. J. Msayib, N. B. McKeown, K. D. M. Harris, Z. Pan, P. M. Budd, A. Butler, J. Selbie, D. Book, A. Walton, Chem. Commun. 2007, 67-69, 10.1039/b614214a.

[25] Microporous polymers as potential hydrogen storage materials, N. B. McKeown, P. M. Budd, D. Book, Macromolecular Rapid Communications 2007, 28, 995-1002, 10.1002/marc.200700054.

[26] Exploring polymers of intrinsic microporosity-microporous, soluble polyamide and Polyimide, J. Weber, O. Su, M. Antonietti, A. Thomas, Macromolecular Rapid Communications 2007, 28, 1871-1876, 10.1002/marc.200700346.

2008

[27] Pervaporation of alcohols through highly permeable PIM-1 polymer films, S. V. Adymkanov, Y. P. Yampol’skii, A. M. Polyakov, P. M. Budd, K. J. Reynolds, N. B. McKeown, K. J. Msayib, Polymer Science Series A 2008, 50, 444-450, 10.1134/s0965545x08040135.

[28] Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1, P. M. Budd, N. B. McKeown, B. S. Ghanem, K. J. Msayib, D. Fritsch, L. Starannikova, N. Belov, O. Sanfirova, Y. Yampolskii, V. Shantarovich, Journal of Membrane Science 2008, 325, 851-860, 10.1016/j.memsci.2008.09.010.

[29] Novel spirobisindanes for use as precursors to polymers of intrinsic microporosity, M. Carta, K. J. Msayib, P. M. Budd, N. B. McKeown, Organic Letters 2008, 10, 2641-2643, 10.1021/ol800573m.

[30] Functionalized analogues of Troger’s base: scope and limitations of a general synthetic procedure and facile, predictable method for the separation of enantiomers, D. Didier, B. Tylleman, N. Lambert, C. Velde, F. Blockhuys, A. Collas, S. Sergeyev, Tetrahedron 2008, 64, 6252-6262, 10.1016/j.tet.2008.04.111.

[31] Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone Groups as Materials for Membrane Gas Separation, N. Du, G. P. Robertson, J. Song, I. Pinnau, S. Thomas, M. D. Guiver, Macromolecules 2008, 41, 9656-9662, 10.1021/ma801858d.

[32] Linear high molecular weight ladder polymer via fast polycondensation of 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethylspirobisindane with 1,4-dicyanotetrafluorobenzene, N. Du, J. Song, G. P. Robertson, I. Pinnau, M. D. Guiver, Macromolecular Rapid Communications 2008, 29, 783-788, 10.1002/marc.200800038.

[33] Polymers of intrinsic microporosity derived from bis(phenazyl) monomers, B. S. Ghanem, N. B. McKeown, P. M. Budd, D. Fritsch, Macromolecules 2008, 41, 1640-1646, 10.1021/ma071846r.

[34] High-performance membranes from polyimides with intrinsic microporosity, B. S. Ghanem, N. B. McKeown, P. M. Budd, J. D. Selbie, D. Fritsch, Advanced Materials 2008, 20, 2766-+, 10.1002/adma.200702400.

[35] Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1), M. Heuchel, D. Fritsch, P. M. Budd, N. B. McKeown, D. Hofmann, Journal of Membrane Science 2008, 318, 84-99, 10.1016/j.memsci.2008.02.038.

[36] Catalysis by microporous phthalocyanine and porphyrin network polymers, H. J. Mackintosh, P. M. Budd, N. B. McKeown, J. Mater. Chem. 2008, 18, 573-578, 10.1039/b715660j.

[37] Synthesis and characterization of fluoropolymers with intrinsic microporosity and their hydrogen adsorption studies, S. Makhseed, J. Samuel, A. Bumajdad, M. Hassan, Journal of Applied Polymer Science 2008, 109, 2591-2597, 10.1002/app.28372.

[38] Linear High Molecular Weight Ladder Polymers by Optimized Polycondensation of Tetrahydroxytetramethylspirobisindane and 1,4-Dicyanotetrafluorobenzene, J. Song, N. Du, Y. Dai, G. P. Robertson, M. D. Guiver, S. Thomas, I. Pinnau, Macromolecules 2008, 41, 7411-7417, 10.1021/ma801000u.

[39] Gas separation, free volume distribution, and physical aging of a highly microporous spirobisindane polymer, C. L. Staiger, S. J. Pas, A. J. Hill, C. J. Cornelius, Chemistry of Materials 2008, 20, 2606-2608, 10.1021/cm071722t.

2009

[40] Novel polymers of intrinsic microporosity (PIMs) derived from 1,1-spiro-bis(1,2,3,4-tetrahydronaphthalene)-based monomers, M. Carta, K. J. Msayib, N. B. McKeown, Tetrahedron Letters 2009, 50, 5954-5957, 10.1016/j.tetlet.2009.08.032.

[41] Polymers of Intrinsic Microporosity Derived from Novel Disulfone-Based Monomers, N. Du, G. P. Robertson, I. Pinnau, M. D. Guiver, Macromolecules 2009, 42, 6023-6030, 10.1021/ma900898m.

[42] Copolymers of Intrinsic Microporosity Based on 2,2 ‘,3,3 ‘-Tetrahydroxy-1,1 ‘-dinaphthyl, N. Du, G. P. Robertson, I. Pinnau, S. Thomas, M. D. Guiver, Macromolecular Rapid Communications 2009, 30, 584-588, 10.1002/marc.200800795.

[43] High-Performance Carboxylated Polymers of Intrinsic Microporosity (PIMs) with Tunable Gas Transport Properties, N. Du, G. P. Robertson, J. Song, I. Pinnau, M. D. Guiver, Macromolecules 2009, 42, 6038-6043, 10.1021/ma9009017.

[44] Synthesis, Characterization, and Gas Permeation Properties of a Novel Group of Polymers with Intrinsic Microporosity: PIM-Polyimides, B. S. Ghanem, N. B. McKeown, P. M. Budd, N. M. Al-Harbi, D. Fritsch, K. Heinrich, L. Starannikova, A. Tokarev, Y. Yampolskii, Macromolecules 2009, 42, 7881-7888, 10.1021/ma901430q.

[45] Binaphthalene-Based, Soluble Polyimides: The Limits of Intrinsic Microporosity, N. Ritter, M. Antonietti, A. Thomas, I. Senkovska, S. Kaskel, J. Weber, Macromolecules 2009, 42, 8017-8020, 10.1021/ma901220c.

[46] Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer, S. Thomas, I. Pinnau, N. Du, M. D. Guiver, Journal of Membrane Science 2009, 338, 1-4, 10.1016/j.memsci.2009.04.021.

[47] Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1), S. Thomas, I. Pinnau, N. Du, M. D. Guiver, Journal of Membrane Science 2009, 333, 125-131, 10.1016/j.memsci.2009.02.003.

[48] Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1), J. Ahn, W.-J. Chung, I. Pinnau, J. Song, N. Du, G. P. Robertson, M. D. Guiver, Journal of Membrane Science 2010, 346, 280-287, 10.1016/j.memsci.2009.09.047.

2010

[49] Highly permeable polymers for gas separation membranes, P. M. Budd, N. B. McKeown, Polymer Chemistry 2010, 1, 63-68, 10.1039/b9py00319c.

[50] Polymers from Troger base polymerisation, M. Carta, M. Croad, N. B. McKeown, Patent WO 2012/035327 A1 2010,

[51] Polymers from Troger base monomers, M. Carta, N. B. McKeown, 2010, Patent WO 2012/035328 A035321,

[52] S. Carturan, A. Antonaci1, A. Quaranta, M. Tonezzer, R. Milan, G. Maggioni, G. Della Mea1, in Sensors and Microsystems: AISEM 2009 Proceedings, Vol. 54 (Eds.: P. Malcovati, A. Baschirotto, A. d’Amico, C. Natale), Springer, 2010, pp. 55-58.

[53] Polymers of Intrinsic Microporosity with Dinaphthyl and Thianthrene Segments, N. Du, G. P. Robertson, I. Pinnau, M. D. Guiver, Macromolecules 2010, 43, 8580-8587, 10.1021/ma101930x.

[54] Free Volume Investigation of Polymers of Intrinsic Microporosity (PIMs): PIM-1 and PIM1 Copolymers Incorporating Ethanoanthracene Units, T. Emmler, K. Heinrich, D. Fritsch, P. M. Budd, N. Chaukura, D. Ehlers, K. Ratzke, F. Faupel, Macromolecules 2010, 43, 6075-6084, 10.1021/ma1008786.

[55] Polymers of intrinsic microporosity for gas permeation: a molecular simulation study, W. Fang, L. Zhang, J. Jiang, Molecular Simulation 2010, 36, 992-1003, 10.1080/08927022.2010.498828.

[56] Production Of Polymers With Inherent Microporosity, D. Fritsch, US patent 2010/0130634 2010,

[57] Triptycene-Based Polymers of Intrinsic Microporosity: Organic Materials That Can Be Tailored for Gas Adsorption, B. S. Ghanem, M. Hashem, K. D. M. Harris, K. J. Msayib, M. Xu, P. M. Budd, N. Chaukura, D. Book, S. Tedds, A. Walton, N. B. McKeown, Macromolecules 2010, 43, 5287-5294, 10.1021/ma100640m.

[58] Porous organic molecules, J. R. Holst, A. Trewin, A. I. Cooper, Nature chemistry 2010, 2, 915-920,

[59] UV-crosslinked membranes from polymers of intrinsic microporosity for liquid separations and their production C. Liu, S. T. Wilson, D. A. Lesch, 2010, pp. US Patent 7,758,751.

[60] Exploitation of Intrinsic Microporosity in Polymer-Based Materials, N. B. McKeown, P. M. Budd, Macromolecules 2010, 43, 5163-5176, 10.1021/ma1006396.

[61] Visual Indicator for Trace Organic Volatiles, N. A. Rakow, M. S. Wendland, J. E. Trend, R. J. Poirier, D. M. Paolucci, S. P. Maki, C. S. Lyons, M. J. Swierczek, Langmuir 2010, 26, 3767-3770, 10.1021/la903483q.

[62] Micropore Analysis of Polymer Networks by Gas Sorption and Xe-129 NMR Spectroscopy: Toward a Better Understanding of Intrinsic Microporosity, J. Weber, J. Schmidt, A. Thomas, W. Boehlmann, Langmuir 2010, 26, 15650-15656, 10.1021/la1028806.

[63] Intermolecular Interactions: New Way to Govern Transport Properties of Membrane Materials, Y. Yampolskii, A. Alentiev, G. Bondarenko, Y. Kostina, M. Heuchel, Ind. Eng. Chem. Res. 2010, 49, 12031-12037, 10.1021/ie100097a.

2011

[64] Crystal Structures of 5,6,5 ‘,6 ‘-Tetramethoxy-1,1 ‘-spirobisindane-3,3 ‘-dione and two of its Fluorene Adducts, M. Carta, J. Raftery, N. B. McKeown, Journal of Chemical Crystallography 2011, 41, 98-104, 10.1007/s10870-010-9844-1.

[65] Azide-based Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Condensable Gas Separation, N. Du, M. M. Dal-Cin, I. Pinnau, A. Nicalek, G. P. Robertson, M. D. Guiver, Macromolecular Rapid Communications 2011, 32, 631-636, 10.1002/marc.201000775.

[66] Polymer nanosieve membranes for CO2-capture applications, N. Du, H. B. Park, G. P. Robertson, M. M. Dal-Cin, T. Visser, L. Scoles, M. D. Guiver, Nature Materials 2011, 10, 372-375, 10.1038/nmat2989.

[67] Gas Permeation and Separation in Functionalized Polymers of Intrinsic Microporosity: A Combination of Molecular Simulations and Ab Initio Calculations, W. Fang, L. Zhang, J. Jiang, Journal of Physical Chemistry C 2011, 115, 14123-14130, 10.1021/jp204193g.

[68] Synthesis and Gas Permeation Properties of Spirobischromane-Based Polymers of Intrinsic Microporosity, D. Fritsch, G. Bengtson, M. Carta, N. B. McKeown, Macromolecular Chemistry and Physics 2011, 212, 1137-1146, 10.1002/macp.201100089.

[69] Enhancing the rigidity of a network polymer of intrinsic microporosity by the combined use of phthalocyanine and triptycene components, M. Hashem, C. G. Bezzu, B. M. Kariuki, N. B. McKeown, Polymer Chemistry 2011, 2, 2190-2192, 10.1039/c1py00288k.

[70] Intrinsically Microporous Polyesters From Betulin – Toward Renewable Materials for Gas Separation Made From Birch Bark, J. Jeromenok, W. Boehlmann, M. Antonietti, J. Weber, Macromolecular Rapid Communications 2011, 32, 1846-1851, 10.1002/marc.201100532.

[71] Molecular Simulations of PIM-1-like Polymers of Intrinsic Microporosity, G. S. Larsen, P. Lin, K. E. Hart, C. M. Colina, Macromolecules 2011, 44, 6944-6951, 10.1021/ma200345v.

[72] Methane adsorption in PIM-1, G. S. Larsen, P. Lin, F. R. Siperstein, C. M. Colina, Adsorption-Journal of the International Adsorption Society 2011, 17, 21-26, 10.1007/s10450-010-9281-7.

[73] Polymer of Intrinsic Microporosity Incorporating Thioamide Functionality: Preparation and Gas Transport Properties, C. R. Mason, L. Maynard-Atem, N. M. Al-Harbi, P. M. Budd, P. Bernardo, F. Bazzarelli, G. Clarizia, J. C. Jansen, Macromolecules 2011, 44, 6471-6479, 10.1021/ma200918h.

[74] Structural Characterization of a Polymer of Intrinsic Microporosity: X-ray Scattering with Interpretation Enhanced by Molecular Dynamics Simulations, A. G. McDermott, G. S. Larsen, P. M. Budd, C. M. Colina, J. Runt, Macromolecules 2011, 44, 14-16, 10.1021/ma1024945.

[75] Intrinsically Microporous Poly(imide)s: Structure-Porosity Relationship Studied by Gas Sorption and X-ray Scattering, N. Ritter, I. Senkovska, S. Kaskel, J. Weber, Macromolecules 2011, 44, 2025-2033, 10.1021/ma102448h.

[76] Towards Chiral Microporous Soluble Polymers – Binaphthalene-Based Polyimides, N. Ritter, I. Senkovska, S. Kaskel, J. Weber, Macromolecular Rapid Communications 2011, 32, 438-443, 10.1002/marc.201000714.

[77] Hexaphenylbenzene-based polymers of intrinsic microporosity, R. Short, M. Carta, C. G. Bezzu, D. Fritsch, B. M. Kariuki, N. B. McKeown, Chem. Commun. 2011, 47, 6822-6824, 10.1039/c1cc11717c.

[78] Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges, J. C. Thomas, J. E. Trend, N. A. Rakow, M. S. Wendland, R. J. Poirier, D. M. Paolucci, Sensors 2011, 11, 3267-3280, 10.3390/s110303267.

[79] Tribenzotriquinacene-based polymers of intrinsic microporosity, J. Vile, M. Carta, C. G. Bezzu, N. B. McKeown, Polymer Chemistry 2011, 2, 2257-2260, 10.1039/c1py00294e.

[80] Laser Chemosensor with Rapid Responsivity and Inherent Memory Based on a Polymer of Intrinsic Microporosity, Y. Wang, N. B. McKeown, K. J. Msayib, G. A. Turnbull, I. D. W. Samuel, Sensors 2011, 11, 2478-2487, 10.3390/s110302478.

[81] Influence of Intermolecular Interactions on the Observable Porosity in Intrinsically Microporous Polymers, J. Weber, N. Du, M. D. Guiver, Macromolecules 2011, 44, 1763-1767, 10.1021/ma101447h.

[82] Effects of Residual Solvent on Membrane Structure and Gas Permeation in a Polymer of Intrinsic Microporosity: Insight from Atomistic Simulation, L. Zhang, W. Fang, J. Jiang, Journal of Physical Chemistry C 2011, 115, 11233-11239, 10.1021/jp2029888.

2012

[83] Characterizing the structure of organic molecules of intrinsic microporosity by molecular simulations and X-ray scattering, L. J. Abbott, A. G. McDermott, A. Del Regno, R. G. Taylor, C. G. Bezzu, K. J. Msayib, N. B. McKeown, F. R. Siperstein, J. Runt, C. M. Colina, The Journal of Physical Chemistry B 2012, 117, 355-364,

[84] A Spirobifluorene-Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation, C. G. Bezzu, M. Carta, A. Tonkins, J. C. Jansen, P. Bernardo, F. Bazzarelli, N. B. McKeown, Advanced Materials 2012, 24, 5930-+, 10.1002/adma.201202393.

[85] Crystal Structures of a Series of 1,1-Spiro-bis(1,2,3,4-tetrahydronaphthalene)-Based Derivatives, M. Carta, M. Helliwell, N. B. McKeown, Journal of Chemical Crystallography 2012, 42, 111-118, 10.1007/s10870-011-0211-7.

[86] Soluble Conjugated Microporous Polymers, G. Cheng, T. Hasell, A. Trewin, D. J. Adams, A. I. Cooper, Angewandte Chemie-International Edition 2012, 51, 12727-12731, 10.1002/anie.201205521.

[87] D. J. Combes, T. I. Cox, I. C. Sage, QinetiQ Limited, 2012, p. US 08137979.

[88] Decarboxylation-Induced Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Membrane Gas Separation, N. Du, M. M. Dal-Cin, G. P. Robertson, M. D. Guiver, Macromolecules 2012, 45, 5134-5139, 10.1021/ma300751s.

[89] Advances in high permeability polymeric membrane materials for CO2 separations, N. Du, H. B. Park, M. M. Dal-Cin, M. D. Guiver, Energy & Environmental Science 2012, 5, 7306-7322, 10.1039/c1ee02668b.

[90] Polymers of intrinsic microporosity (PIMs) substituted with methyl tetrazole, N. Du, G. P. Robertson, M. M. Dal-Cin, L. Scoles, M. D. Guiver, Polymer 2012, 53, 4367-4372, 10.1016/j.polymer.2012.07.055.

[91] Advances in high permeability polymeric membrane materials for CO2 separations, N. Y. Du, H. B. Park, M. M. Dal-Cin, M. D. Guiver, Energy & Environmental Science 2012, 5, 7306-7322, 10.1039/c1ee02668b.

[92] High performance organic solvent nanofiltration membranes: Development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (PIMs), D. Fritsch, P. Merten, K. Heinrich, M. Lazar, M. Priske, Journal of Membrane Science 2012, 401, 222-231, 10.1016/j.memsci.2012.02.008.

[93] A facile synthesis of a novel triptycene-containing A-B monomer: precursor to polymers of intrinsic microporosity, B. S. Ghanem, Polymer Chemistry 2012, 3, 96-98, 10.1039/c1py00423a.

[94] Aging and Free Volume in a Polymer of Intrinsic Microporosity (PIM-1), S. Harms, K. Raetzke, F. Faupel, N. Chaukura, P. M. Budd, W. Egger, L. Ravelli, Journal of Adhesion 2012, 88, 608-619, 10.1080/00218464.2012.682902.

[95] Preconcentration and detection of chlorinated organic compounds and benzene, S. T. Hobson, S. Cemalovic, S. V. Patel, Analyst 2012, 137, 1284-1289, 10.1039/c2an16053f.

[96] Characterization of the Gas Transport in Mixed Matrix Membranes Based on Polymers with Intrinsic Microporosity (PIMs), J. C. Jansen, P. Bernardo, F. Bazzarelli, G. Clarizia, P. M. Budd, Y. Yampolskii, Procedia Eng. 2012, 44, 103-105, 10.1016/j.proeng.2012.08.324.

[97] Analysis of Gas and Vapour Transport in Novel Polymers of Intrinsic Microporosity (PIMs), J. C. Jansen, P. Bernardo, F. Bazzarelli, N. B. McKeown, K. Friess, Y. Yampolskii, Procedia Eng. 2012, 44, 150-151, 10.1016/j.proeng.2012.08.340.

[98] Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation, M. M. Khan, V. Filiz, G. Bengtson, S. Shishatskiy, M. Rahman, V. Abetz, Nanoscale Research Letters 2012, 7, 1-12, 10.1186/1556-276x-7-504.

[99] High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development, F. Y. Li, Y. Xiao, T.-S. Chung, S. Kawi, Macromolecules 2012, 45, 1427-1437, 10.1021/ma202667y.

[100] UV-Rearranged PIM-1 Polymeric Membranes for Advanced Hydrogen Purification and Production, F. Y. Li, Y. Xiao, Y. K. Ong, T.-S. Chung, Advanced Energy Materials 2012, 2, 1456-1466, 10.1002/aenm.201200296.

[101] Synthesis and Gas Transport Properties of Hydroxyl-Functionalized Polyimides with Intrinsic Microporosity, X. Ma, R. Swaidan, Y. Belmabkhout, Y. Zhu, E. Litwiller, M. Jouiad, I. Pinnau, Y. Han, Macromolecules 2012, 45, 3841-3849, 10.1021/ma300549m.

[102] Phthalimide based polymers of intrinsic microporosity, S. Makhseed, F. Ibrahim, J. Samuel, Polymer 2012, 53, 2964-2972, 10.1016/j.polymer.2012.05.001.

[103] Polymers of Intrinsic Microporosity, N. B. McKeown, ISRN Materials Science 2012, Article ID 513986, 10.5402/2012/513986.

[104] Non Equilibrium Modeling of Sorption of Gases and Vapors in Polymers of Intrinsic Microporosity (PIM), M. Minelli, K. Friess, O. Vopicka, V. Hynek, M. Lanc, M. G. De Angelis, Procedia Eng. 2012, 44, 147-149, 10.1016/j.proeng.2012.08.339.

[105] Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture, H. A. Patel, C. T. Yavuz, Chem. Commun. 2012, 48, 9989-9991, 10.1039/c2cc35392j.

[106] Intrinsic Microporosity Polymers (tb-pims) Membrane of New Generation: Molecular Modelling and Permeation Properties, E. Tocci, L. De Lorenzo, J. C. Jansen, P. Bernardo, F. Bazzarelli, N. B. McKeown, Procedia Eng. 2012, 44, 113-115, 10.1016/j.proeng.2012.08.328.

[107] Solvent nanofiltration through high permeability glassy polymers: Effect of polymer and solute nature, S. Tsarkov, V. Khotimskiy, P. M. Budd, V. Volkov, J. Kukushkina, A. Volkov, Journal of Membrane Science 2012, 423, 65-72, 10.1016/j.memsci.2012.07.026.

[108] Explosive Sensing Using Polymer Lasers, Y. Wang, Y. Yang, G. A. Turnbull, I. D. W. Samuel, Molecular Crystals and Liquid Crystals 2012, 554, 103-110, 10.1080/15421406.2012.633812.

[109] Polymeric Gas Separation Membranes, Y. Yampolskii, Macromolecules 2012, 45, 3298-3311, 10.1021/ma3002138.

[110] Molecular engineering of PIM-1/Matrimid blend membranes for gas separation, W. F. Yong, F. Y. Li, Y. C. Xiao, P. Li, K. P. Pramoda, Y. W. Tong, T. S. Chung, Journal of Membrane Science 2012, 407, 47-57, 10.1016/j.memsci.2012.03.038.

[111] Grand Canonical Monte Carlo simulations for energy gases on PIM-1 polymer and silicalite-1, L. Zhao, D. Zhai, B. Liu, Z. Liu, C. Xu, W. Wei, Y. Chen, J. Gao, Chemical Engineering Science 2012, 68, 101-107, 10.1016/j.ces.2011.09.017.

[112] A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation, X. Zhu, C. Tian, S. M. Mahurin, S.-H. Chai, C. Wang, S. Brown, G. M. Veith, H. Luo, H. Liu, S. Dai, Journal of the American Chemical Society 2012, 134, 10478-10484, 10.1021/ja304879c.

2013

[113] Characterizing the Structure of Organic Molecules of Intrinsic Microporosity by Molecular Simulations and X-ray Scattering, L. J. Abbott, A. G. McDermott, A. Del Regno, R. G. D. Taylor, C. G. Bezzu, K. J. Msayib, N. B. McKeown, F. R. Siperstein, J. Runt, C. M. Colina, Journal of Physical Chemistry B 2013, 117, 355-364, 10.1021/jp308798u.

[114] Design principles for microporous organic solids from predictive computational screening, L. J. Abbott, N. B. McKeown, C. M. Colina, Journal of Materials Chemistry A 2013, 1, 11950-11960, 10.1039/c3ta12442h.

[115] Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8, A. F. Bushell, M. P. Attfield, C. R. Mason, P. M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. C. Jansen, M. Lanc, K. Friess, V. Shantarovich, V. Gustov, V. Isaeva, Journal of Membrane Science 2013, 427, 48-62, 10.1016/j.memsci.2012.09.035.

[116] Nanoporous Organic Polymer/Cage Composite Membranes, A. F. Bushell, P. M. Budd, M. P. Attfield, J. T. A. Jones, T. Hasell, A. I. Cooper, P. Bernardo, F. Bazzarelli, G. Clarizia, J. C. Jansen, Angewandte Chemie-International Edition 2013, 52, 1253-1256, 10.1002/anie.201206339.

[117] An Efficient Polymer Molecular Sieve for Membrane Gas Separations, M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J. C. Jansen, P. Bernardo, F. Bazzarelli, N. B. McKeown, Science 2013, 339, 303-307, 10.1126/science.1228032.

[118] Molecular modelling of polyimides with intrinsic microporosity: from structural characteristics to transport behaviour, K.-S. Chang, K.-L. Tung, Y.-F. Lin, H.-Y. Lin, Rsc Advances 2013, 3, 10403-10413, 10.1039/c3ra40196k.

[119] Effect of the Porosity of a Polymer of Intrinsic Microporosity (PIM) on Its Intrinsic Fluorescence, S. Chen, W. Yi, J. Duhamel, K. Heinrich, G. Bengtson, D. Fritsch, Journal of Physical Chemistry B 2013, 117, 5249-5260, 10.1021/jp307173k.

[120] Gas Solubility, Diffusivity, Permeability, and Selectivity in Mixed Matrix Membranes Based on PIM-1 and Fumed Silica, M. G. De Angelis, R. Gaddoni, G. C. Sarti, Industrial & Engineering Chemistry Research 2013, 52, 10506-10520, 10.1021/ie303571h.

[121] Polymers of Intrinsic Microporosity Containing Troger Base for CO2 Capture, A. Del Regno, A. Gonciaruk, L. Leay, M. Carta, M. Croad, R. Malpass-Evans, N. B. McKeown, F. R. Siperstein, Industrial & Engineering Chemistry Research 2013, 52, 16939-16950, 10.1021/ie402846a.

[122] Organic molecules of intrinsic microporosity: Characterization of novel microporous materials, A. Del Regno, F. R. Siperstein, Microporous and Mesoporous Materials 2013, 176, 55-63, 10.1016/j.micromeso.2013.03.041.

[123] Polymer Rigidity Improves Microporous Membranes, M. D. Guiver, Y. M. Lee, Science 2013, 339, 284-285, 10.1126/science.1232714.

[124] Analysis of force fields and BET theory for polymers of intrinsic microporosity, K. E. Hart, L. J. Abbott, C. M. Colina, Molecular Simulation 2013, 39, 397-404, 10.1080/08927022.2012.733945.

[125] Toward Effective CO2/CH4 Separations by Sulfur-Containing PIMs via Predictive Molecular Simulations, K. E. Hart, L. J. Abbott, N. B. McKeown, C. M. Colina, Macromolecules 2013, 46, 5371-5380, 10.1021/ma400334b.

[126] Simulated swelling during low-temperature N-2 adsorption in polymers of intrinsic microporosity, K. E. Hart, J. M. Springmeier, N. B. McKeown, C. M. Colina, Physical Chemistry Chemical Physics 2013, 15, 20161-20169, 10.1039/c3cp53402b.

[127] Gas sorption isotherms in swelling glassy polymers-Detailed atomistic simulations, O. Hoelck, M. Boehning, M. Heuchel, M. R. Siegert, D. Hofmann, Journal of Membrane Science 2013, 428, 523-532, 10.1016/j.memsci.2012.10.023.

[128] Synthesis of linear unbranched polymers chain free of macrocyclic species and oligomers based on chloro-monomers and TTSBI, F. Ibrahim, Elixir International Journal 2013, 19054-19059, 19056 pp.,

[129] Synthesis and characterization of linear polyimides with intrinsic microporosity and their hydrogen adsorption studies, F. Ibrahim, Elixir International Journal 2013, 17542-17548,

[130] A polymer of intrinsic microporosity as the active binder to enhance adsorption/separation properties of composite hollow fibres, C. A. Jeffs, M. W. Smith, C. A. Stone, C. G. Bezzu, K. J. Msayib, N. B. McKeown, S. P. Perera, Microporous and Mesoporous Materials 2013, 170, 105-112, 10.1016/j.micromeso.2012.11.039.

[131] Restricted Access: On the Nature of Adsorption/Desorption Hysteresis in Amorphous, Microporous Polymeric Materials, J. Jeromenok, J. Weber, Langmuir 2013, 29, 12982-12989, 10.1021/la402630s.

[132] Cross-linking of Polymer of Intrinsic Microporosity (PIM-1) via nitrene reaction and its effect on gas transport property, M. M. Khan, G. Bengtson, S. Shishatskiy, B. N. Gacal, M. M. Rahman, S. Neumann, V. Filiz, V. Abetz, European Polymer Journal 2013, 49, 4157-4166, 10.1016/j.eurpolymj.2013.09.022.

[133] Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM), M. M. Khan, V. Filiz, G. Bengtson, S. Shishatskiy, M. M. Rahman, J. Lillepaerg, V. Abetz, Journal of Membrane Science 2013, 436, 109-120, 10.1016/j.memsci.2013.02.032.

[134] Single Polymer Chain Surface Area as a Descriptor for Rapid Screening of Microporous Polymers for Gas Adsorption, L. Leay, F. R. Siperstein, Adsorption Science & Technology 2013, 31, 99-112, 10.1260/0263-6174.31.1.99.

[135] Physical aging, high temperature and water vapor permeation studies of UV-rearranged PIM-1 membranes for advanced hydrogen purification and production, F. Y. Li, T.-S. Chung, International Journal of Hydrogen Energy 2013, 38, 9786-9793, 10.1016/j.ijhydene.2013.05.056.

[136] Gas sorption and permeation in PIM-1, P. Li, T. S. Chung, D. R. Paul, Journal of Membrane Science 2013, 432, 50-57, 10.1016/j.memsci.2013.01.009.

[137] Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation, S. Li, H. J. Jo, S. H. Han, C. H. Park, S. Kim, P. M. Budd, Y. M. Lee, Journal of Membrane Science 2013, 434, 137-147, 10.1016/j.memsci.2013.01.011.

[138] Novel Spirobifluorene- and Dibromospirobifluorene-Based Polyimides of Intrinsic Microporosity for Gas Separation Applications, X. Ma, O. Salinas, E. Litwiller, I. Pinnau, Macromolecules 2013, 46, 9618-9624,

[139] Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor, X. Ma, R. Swaidan, B. Teng, H. Tan, O. Salinas, E. Litwiller, Y. Han, I. Pinnau, Carbon 2013, 62, 88-96, 10.1016/j.carbon.2013.05.057.

[140] Molecular modeling investigation of the fundamental structural parameters of polymers of intrinsic microporosity for the design of tailor-made ultra-permeable and highly selective gas separation membranes, T. M. Madkour, J. E. Mark, Journal of Membrane Science 2013, 431, 37-46, 10.1016/j.memsci.2012.12.033.

[141] Microporous organic polymers incorporating dicarboximide units for H-2 storage and remarkable CO2 capture, S. Makhseed, J. Samuel, Journal of Materials Chemistry A 2013, 1, 13004-13010, 10.1039/c3ta12233f.

[142] New organophilic mixed matrix membranes derived from a polymer of intrinsic microporosity and silicalite-1, C. R. Mason, M. G. Buonomenna, G. Golemme, P. M. Budd, F. Galiano, A. Figoli, K. Friess, V. Hynek, Polymer 2013, 54, 2222-2230, 10.1016/j.polymer.2013.02.032.

[143] Polymers of intrinsic microporosity, N. B. McKeown, P. M. Budd, Encyclopedia of Membrane Science and Technology 2013, 2, 781-797, 10.1002/9781118522318.emst057.

[144] Modeling gas and vapor sorption in a polymer of intrinsic microporosity (PIM-1), M. Minelli, K. Friess, O. Vopicka, M. G. De Angelis, Fluid Phase Equilibria 2013, 347, 35-44, 10.1016/j.fluid.2013.03.003.

[145] Molecular Motions of Adsorbed CO2 on a Tetrazole-Functionalized PIM Polymer Studied with C-13 NMR, J. K. Moore, M. D. Guiver, N. Du, S. E. Hayes, M. S. Conradi, Journal of Physical Chemistry C 2013, 117, 22995-22999, 10.1021/jp4084234.

[146] Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity, Y. Rogan, L. Starannikova, V. Ryzhikh, Y. Yampolskii, P. Bernardo, F. Bazzarelli, J. C. Jansen, N. B. McKeown, Polymer Chemistry 2013, 4, 3813-3820, 10.1039/c3py00451a.

[147] Photo-oxidative enhancement of polymeric molecular sieve membranes, Q. Song, S. Cao, P. Zavala-Rivera, L. P. Lu, W. Li, Y. Ji, S. A. Al-Muhtaseb, A. K. Cheetham, E. Sivaniah, Nature Communications 2013, 4, 10.1038/ncomms2942.

[148] High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity, R. Swaidan, X. Ma, E. Litwiller, I. Pinnau, Journal of Membrane Science 2013, 447, 387-394, 10.1016/j.memsci.2013.07.057.

[149] T. Visser, Y. Gao, Parker Filtration B.V., Neth.; Vaperma Inc. . 2013, p. No pp. given.

[150] Equilibrium and transient sorption of vapours and gases in the polymer of intrinsic microporosity PIM-1, O. Vopicka, K. Friess, V. Hynek, P. Sysel, M. Zgazar, M. Sipek, K. Pilnacek, M. Lanc, J. C. Jansen, C. R. Mason, P. M. Budd, Journal of Membrane Science 2013, 434, 148-160, 10.1016/j.memsci.2013.01.040.

[151] Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification, W. F. Yong, F. Y. Li, T.-S. Chung, Y. W. Tong, Journal of Materials Chemistry A 2013, 1, 13914-13925, 10.1039/c3ta13308g.

[152] High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O-2/N-2 and CO2/N-2 separation, W. F. Yong, F. Y. Li, Y. C. Xiao, T. S. Chung, Y. W. Tong, Journal of Membrane Science 2013, 443, 156-169, 10.1016/j.memsci.2013.04.037.

2014

[153] PIM-1/MIL-101 Hybrid Composite Membrane Material: Transport Properties and Free Volume, A. Y. Alentiev, G. N. Bondarenko, Y. V. Kostina, V. P. Shantarovich, S. N. Klyamkin, V. P. Fedin, K. A. Kovalenko, Y. P. Yampolskii, Petroleum Chemistry 2014, 54, 477-481, 10.1134/s0965544114070020.

[154] Nanoporous covalent organic polymers incorporating Troger’s base functionalities for enhanced CO2 capture, J. Byun, S.-H. Je, H. A. Patel, A. Coskun, C. T. Yavuz, Journal of Materials Chemistry A 2014, 2, 12507-12512, 10.1039/c4ta00698d.

[155] Gas Permeability of Hexaphenylbenzene Based Polymers of Intrinsic Microporosity, M. Carta, P. Bernardo, G. Clarizia, J. C. Jansen, N. B. McKeown, Macromolecules 2014, 47, 8320-8327, 10.1021/ma501925j.

[156] Heterogeneous organocatalysts composed of microporous polymer networks assembled by Troger’s base formation, M. Carta, M. Croad, K. Bugler, K. J. Msayib, N. B. McKeown, Polymer Chemistry 2014, 5, 5262-5266, 10.1039/c4py00608a.

[157] Synthesis of cardo-polymers using Troger’s base formation, M. Carta, M. Croad, J. C. Jansen, P. Bernardo, G. Clarizia, N. B. McKeown, Polymer Chemistry 2014, 5, 5255-5261, 10.1039/c4py00607k.

[158] Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Troger’s Base Polymers, M. Carta, M. Croad, R. Malpass-Evans, J. C. Jansen, P. Bernardo, G. Clarizia, K. Friess, M. Lanc, N. B. McKeown, Advanced Materials 2014, 26, 3526-3531, 10.1002/adma.201305783.

[159] Conjugated Polymers of Intrinsic Microporosity (C-PIMs), G. Cheng, B. Bonillo, R. S. Sprick, D. J. Adams, T. Hasell, A. I. Cooper, Advanced Functional Materials 2014, 24, 5219-5224, 10.1002/adfm.201401001.

[160] N. Du, M. D. Guiver, National Research Council of Canada, Can. . 2014, p. No pp. given.

[161] Ultra-Microporous Triptycene-based Polyimide Membranes for High-Performance Gas Separation, B. S. Ghanem, R. Swaidan, E. Litwiller, I. Pinnau, Advanced Materials 2014, 26, 3688-3692, 10.1002/adma.201306229.

[162] Energy-Efficient Hydrogen Separation by AB-Type Ladder-Polymer Molecular Sieves, B. S. Ghanem, R. Swaidan, X. Ma, E. Litwiller, I. Pinnau, Advanced Materials 2014, 26, 6696-6700, 10.1002/adma.201401328.

[163] Ultrathin Polymer Films with Intrinsic Microporosity: Anomalous Solvent Permeation and High Flux Membranes, P. Gorgojo, S. Karan, H. C. Wong, M. F. Jimenez-Solomon, J. T. Cabral, A. G. Livingston, Advanced Functional Materials 2014, 24, 4729-4737, 10.1002/adfm.201400400.

[164] S. H. Gryska, N. B. O’Bryan, N. A. Rakow, M. S. Wendland, 3M Innovative Properties Company, USA . 2014, p. No pp. given.

[165] PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide, L. Hao, P. Li, T.-S. Chung, Journal of Membrane Science 2014, 453, 614-623, 10.1016/j.memsci.2013.11.045.

[166] Formation of Defect-Free Polyetherimide/PIM-1 Hollow Fiber Membranes for Gas Separation, L. Hao, J. Zuo, T.-S. Chung, Aiche Journal 2014, 60, 3848-3858, 10.1002/aic.14565.

[167] Estimating gas permeability and permselectivity of microporous polymers, K. E. Hart, C. M. Colina, Journal of Membrane Science 2014, 468, 259-268, 10.1016/j.memsci.2014.06.017.

[168] Ionomers of Intrinsic Microporosity: In Silico Development of Ionic-Functionalized Gas-Separation Membranes, K. E. Hart, C. M. Colina, Langmuir 2014, 30, 12039-12048, 10.1021/la5027202.

[169] Synthesis, characterization and gas permeation properties of anthracene maleimide-based polymers of intrinsic microporosity, M. M. Khan, G. Bengtson, S. Neumann, M. M. Rahman, V. Abetz, V. Filiz, Rsc Advances 2014, 4, 32148-32160, 10.1039/c4ra03663h.

[170] Sulfonation of PIM-1-towards highly oxygen permeable binders for fuel cell application, B. G. Kim, D. Henkensmeier, H.-J. Kim, J. H. Jang, S. W. Nam, T.-H. Lim, Macromolecular Research 2014, 22, 92-98, 10.1007/s13233-014-2007-z.

[171] Predictive simulations of the structural and adsorptive properties for PIM-1 variations, G. S. Larsen, K. E. Hart, C. M. Colina, Molecular Simulation 2014, 40, 599-609, 10.1080/08927022.2013.829222.

[172] Ending Aging in Super Glassy Polymer Membranes, C. H. Lau, N. Phuc Tien, M. R. Hill, A. W. Thornton, K. Konstas, C. M. Doherty, R. J. Mulder, L. Bourgeois, A. C. Y. Liu, D. J. Sprouster, J. P. Sullivan, T. J. Bastow, A. J. Hill, D. L. Gin, R. D. Noble, Angewandte Chemie-International Edition 2014, 53, 5322-5326, 10.1002/anie.201402234.

[173] Temperature dependence of gas sorption and permeation in PIM-1, P. Li, T. S. Chung, D. R. Paul, Journal of Membrane Science 2014, 450, 380-388, 10.1016/j.memsci.2013.09.030.

[174] Efficient Synthesis of Rigid Ladder Polymers via Palladium Catalyzed Annulation, S. Liu, Z. Jin, Y. C. Teo, Y. Xia, Journal of the American Chemical Society 2014, 136, 17434-17437, 10.1021/ja5110415.

[175] A. G. Livingston, M. F. Jimenez Solomon, UK . 2014, p. No pp. given.

[176] Pristine and thermally-rearranged gas separation membranes from novel o-hydroxyl-functionalized spirobifluorene-based polyimides, X. Ma, O. Salinas, E. Litwiller, I. Pinnau, Polymer Chemistry 2014, 5, 6914-6922, 10.1039/c4py01221f.

[177] Metastable Ionic Diodes Derived from an Amine-Based Polymer of Intrinsic Microporosity, E. Madrid, Y. Rong, M. Carta, N. B. McKeown, R. Malpass-Evans, G. A. Attard, T. J. Clarke, S. H. Taylor, Y.-T. Long, F. Marken, Angewandte Chemie-International Edition 2014, 53, 10751-10754, 10.1002/anie.201405755.

[178] Enhancement of CO2 Affinity in a Polymer of Intrinsic Microporosity by Amine Modification, C. R. Mason, L. Maynard-Atem, K. W. J. Heard, B. Satilmis, P. M. Budd, K. Friess, M. Lanc, P. Bernardo, G. Clarizia, J. C. Jansen, Macromolecules 2014, 47, 1021-1029, 10.1021/ma401869p.

[179] Physical aging of polymers of intrinsic microporosity: a SAXS/WAXS study, A. G. McDermott, P. M. Budd, N. B. McKeown, C. M. Colina, J. Runt, Journal of Materials Chemistry A 2014, 2, 11742-11752, 10.1039/c4ta02165g.

[180] A highly permeable polyimide with enhanced selectivity for membrane gas separations, Y. Rogan, R. Malpass-Evans, M. Carta, M. Lee, J. C. Jansen, P. Bernardo, G. Clarizia, E. Tocci, K. Friess, M. Lanc, N. B. McKeown, Journal of Materials Chemistry A 2014, 2, 4874-4877, 10.1039/c4ta00564c.

[181] High density heterogenisation of molecular electrocatalysts in a rigid intrinsically microporous polymer, Y. Rong, R. Malpass-Evans, M. Carta, N. B. McKeown, G. A. Attard, F. Marken, Electrochemistry Communications 2014, 46, 26-29, 10.1016/j.elecom2014.06.005.

[182] Intrinsically Porous Polymer Protects Catalytic Gold Particles for Enzymeless Glucose Oxidation, Y. Rong, R. Malpass-Evans, M. Carta, N. B. McKeown, G. A. Attard, F. Marken, Electroanalysis 2014, 26, 904-909, 10.1002/elan.201400085.

[183] Base-catalysed hydrolysis of PIM-1: amide versus carboxylate formation, B. Satilmis, P. M. Budd, Rsc Advances 2014, 4, 52189-52198, 10.1039/c4ra09907a.

[184] Thermally Rearrangeable PIM-Polyimides for Gas Separation Membranes, H. Shamsipur, B. A. Dawood, P. M. Budd, P. Bernardo, G. Clarizia, J. C. Jansen, Macromolecules 2014, 47, 5595-5606, 10.1021/ma5011183.

[185] Positronium formation and thermostimulated luminescence: A common nature and combined application to studies of organic systems, V. P. Shantarovich, V. W. Gustov, E. V. Belousova, A. V. Polyakova, V. G. Bekeshev, I. B. Kevdina, Russ. J. Phys. Chem. B 2014, 8, 559-565, 10.1134/S1990793114040095.

[186] Local Rigidity as a Criterion of Gas Permeation of Polymer and Composition Materials; PAL and TSL Experiments, V. P. Shantarovich, V. W. Gustov, E. V. Belousova, A. V. Polyakova, V. G. Bekeshev, I. B. Kevdina, Y. P. Yampolskii, A. V. Pastukhov, Acta Physica Polonica A 2014, 125, 806-811,

[187] One-step synthesis of carbon nanosheets converted from a polycyclic compound and their direct use as transparent electrodes of ITO-free organic solar cells, S.-Y. Son, Y.-J. Noh, C. Bok, S. Lee, B. G. Kim, S.-I. Na, H.-I. Joh, Nanoscale 2014, 6, 678-682, 10.1039/C3NR04828D.

[188] Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes, Q. Song, S. Cao, R. H. Pritchard, B. Ghalei, S. A. Al-Muhtaseb, E. M. Terentjev, A. K. Cheetham, E. Sivaniah, Nature Communications 2014, 5, 10.1038/ncomms5813.

[189] Rational Design of Intrinsically Ultramicroporous Polyimides Containing Bridgehead-Substituted Triptycene for Highly Selective and Permeable Gas Separation Membranes, R. Swaidan, M. Al-Saeedi, B. Ghanem, E. Litwiller, I. Pinnau, Macromolecules 2014, 47, 5104-5114, 10.1021/ma5009226.

[190] Role of Intrachain Rigidity in the Plasticization of Intrinsically Microporous Triptycene-Based Polyimide Membranes in Mixed-Gas CO2/CH4 Separations, R. Swaidan, B. Ghanem, M. Al-Saeedi, E. Litwiller, I. Pinnau, Macromolecules 2014, 47, 7453-7462, 10.1021/ma501798v.

[191] Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1, R. Swaidan, B. S. Ghanem, E. Litwiller, I. Pinnau, Journal of Membrane Science 2014, 457, 95-102, 10.1016/j.memsci.2014.01.055.

[192] Triptycene-Based Organic Molecules of Intrinsic Microporosity, R. G. D. Taylor, M. Carta, C. G. Bezzu, J. Walker, K. J. Msayib, B. M. Kariuki, N. B. McKeown, Organic Letters 2014, 16, 1848-1851, 10.1021/ol500591q.

[193] Gas permeation in thin films of “high free-volume” glassy perfluoropolymers: Part I. Physical aging, R. R. Tiwari, Z. P. Smith, H. Q. Lin, B. D. Freeman, D. R. Paul, Polymer 2014, 55, 5788-5800, 10.1016/j.polymer.2014.09.022.

[194] Molecular Modeling and Gas Permeation Properties of a Polymer of Intrinsic Microporosity Composed of Ethanoanthracene and Troger’s Base Units, E. Tocci, L. De Lorenzo, P. Bernardo, G. Clarizia, F. Bazzarelli, N. B. McKeown, M. Carta, R. Malpass-Evans, K. Friess, K. Pilnacek, M. Lanc, Y. P. Yampolskii, L. Strarannikova, V. Shantarovich, M. Mauri, J. C. Jansen, Macromolecules 2014, 47, 7900-7916, 10.1021/ma501469m.

[195] G. Turnbull, I. Samuel, in Low Threshold Organic Semiconductor Lasers: Hybrid Optoelectronics and Applications as Explosive Sensors, 2014, pp. 123-138.

[196] Centrotriindane- and triptindane-based polymers of intrinsic microporosity, J. Vile, M. Carta, C. G. Bezzu, B. M. Kariuki, N. B. McKeown, Polymer 2014, 55, 326-329, 10.1016/j.polymer.2013.07.035.

[197] Mixed gas sorption in glassy polymeric membranes: II. CO2/CH4 mixtures in a polymer of intrinsic microporosity (PIM-1), O. Vopicka, M. G. De Angelis, N. Du, N. Li, M. D. Guiver, G. C. Sarti, Journal of Membrane Science 2014, 459, 264-276, 10.1016/j.memsci.2014.02.003.

[198] Analysis of gas sorption in glassy polymers with the GAB model: An alternative to the dual mode sorption model, O. Vopicka, K. Friess, J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1490-1495, 10.1002/polb.23588.

[199] Study on preparation of soluble polymer with intrinsic microporosity (PIM-1), C. Wang, Q. Li, X.-f. Huang, G.-h. Wang, Henan Huagong 2014, 31, 28-32,

[200] Microporous Polyimides with Rationally Designed Chain Structure Achieving High Performance for Gas Separation, Z. Wang, D. Wang, J. Jin, Macromolecules 2014, 47, 7477-7483, 10.1021/ma5017506.

[201] Troger’s Base-Based Microporous Polyimide Membranes for High-Performance Gas Separation, Z. Wang, D. Wang, F. Zhang, J. Jin, Acs Macro Letters 2014, 3, 597-601, 10.1021/mz500184z.

[202] Troger’s base-based copolymers with intrinsic microporosity for CO2 separation and effect of Troger’s base on separation performance, Z. G. Wang, X. Liu, D. Wang, J. Jin, Polymer Chemistry 2014, 5, 2793-2800, 10.1039/c3py01608k.

[203] Advances in Structure Controls and Modifications of PIMs Membranes for Gas Separation, X. Wu, Q. Zhang, A. Zhu, Q. Liu, Progress in Chemistry 2014, 26, 1214-1222, 10.7536/pc131208.

[204] Polymers of intrinsic microporosity in electrocatalysis: Novel pore rigidity effects and lamella palladium growth, F. Xia, M. Pan, S. Mu, R. Malpass-Evans, M. Carta, N. B. McKeown, G. A. Attard, A. Brew, D. J. Morgan, F. Marken, Electrochimica Acta 2014, 128, 3-9, 10.1016/j.electacta.2013.08.169.

[205] Molecular interaction, gas transport properties and plasticization behavior of cPIM-1/Torlon blend membranes, W. F. Yong, F. Y. Li, T. S. Chung, Y. W. Tong, Journal of Membrane Science 2014, 462, 119-130, 10.1016/j.memsci.2014.03.046.

[206] Mechanistic insight into highly efficient gas permeation and separation in a shape-persistent ladder polymer membrane, J. Zhou, X. Zhu, J. Hu, H. Liu, Y. Hu, J. Jiang, Physical Chemistry Chemical Physics 2014, 16, 6075-6083, 10.1039/c3cp55498h.

[207] Intrinsically Microporous Soluble Polyimides Incorporating Troger’s Base for Membrane Gas Separation, Y. Zhuang, J. G. Seong, Y. S. Do, H. J. Jo, Z. Cui, J. Lee, Y. M. Lee, M. D. Guiver, Macromolecules 2014, 47, 3254-3262, 10.1021/ma5007073.

2015

[208] Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approachd, A. Ahmed, T. Hasell, R. Clowes, P. Myers, A. I. Cooper, H. Zhang, Chem. Commun. 2015, 51, 1717-1720, 10.1039/c4cc08919g.

[209] Polymers of intrinsic microporosity as high temperature templates for the formation of nanofibrous oxides, H. Al Kutubi, L. Rassaei, W. Olthuis, G. W. Nelson, J. S. Foord, P. Holdway, M. Carta, R. Malpass-Evans, N. B. McKeown, S. C. Tsang, R. Castaing, T. R. Forder, M. D. Jones, D. He, F. Marken, Rsc Advances 2015, 5, 73323-73326, 10.1039/c5ra15131g.

[210] Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides, F. Alghunaimi, B. Ghanem, N. Alaslai, R. Swaidan, E. Litwiller, I. Pinnau, Journal of Membrane Science 2015, 490, 321-327, 10.1016/j.memsci.2015.05.010.

[211] Application of PIM-1 for solvent swing adsorption and solvent recovery by nanofiltration, T. S. Anokhina, A. A. Yushkin, P. M. Budd, A. V. Volkov, Separation and Purification Technology 2015, 156, 683-690,

[212] Fabrication of ultrathin films containing the metal organic framework Fe-MIL-88B-NH2 by the Langmuir-Blodgett technique, J. Benito, M. Fenero, S. Sorribas, B. Zornoza, K. J. Msayib, N. B. McKeown, C. Tellez, J. Coronas, I. Gascon, Colloids and Surfaces a-Physicochemical and Engineering Aspects 2015, 470, 161-170, 10.1016/j.colsurfa.2015.01.082.

[213] High Temperature Mass Detection Using a Carbon Nanotube Bilayer Modified Quartz Crystal Microbalance as a GC Detector, M. Benz, L. Benz, S. V. Patel, Analytical Chemistry 2015, 87, 2779-2787, 10.1021/ac504101a.

[214] Interaction of a polymer of intrinsic microporosity (PIM-1) with penetrants, N. Chaukura, L. Maynard-Atem, American Journal of Applied Chemistry 2015, 3, 139-146, 10.11648/j.ajac.20150303.17.

[215] In Silico Determination of Gas Permeabilities by Non-Equilibrium Molecular Dynamics: CO2 and He through PIM-1, H. Frentrup, K. E. Hart, C. M. Colina, E. A. Muller, Membranes 2015, 5, 99-119, 10.3390/membranes5010099.

[216] PIM-1/graphene composite: A combined experimental and molecular simulation study, A. Gonciaruk, K. Althumayri, W. J. Harrison, P. M. Budd, F. R. Siperstein, Microporous and Mesoporous Materials 2015, 209, 126-134, 10.1016/j.micromeso.2014.07.007.

[217] An n-type, new emerging luminescent polybenzodioxane polymer for application in solution-processed green emitting OLEDs, B. K. Gupta, G. Kedawat, P. Kumar, M. A. Rafiee, P. Tyagi, R. Srivastava, P. M. Ajayan, Journal of Materials Chemistry C 2015, 3, 2568-2574, 10.1039/c4tc02581d.

[218] Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance, L. Hao, K.-S. Liao, T.-S. Chung, Journal of Materials Chemistry A 2015, 3, 17273-17281, 10.1039/c5ta03776j.

[219] Intrinsically microporous polymer slows down fuel cell catalyst corrosion, D. He, Y. Rong, Z. Kou, S. Mu, T. Peng, R. Malpass-Evans, M. Carta, N. B. McKeown, F. Marken, Electrochemistry Communications 2015, 59, 72-76, 10.1016/j.elecom.2015.07.008.

[220] Microwave-assisted synthesis of mesoporous metal-organic framework NH2-MIL-101(Al), V. I. Isaeva, A. L. Tarasov, L. E. Starannikova, Y. P. Yampol’skii, A. Y. Alent’ev, L. M. Kustov, Russian Chemical Bulletin 2015, 64, 2791-2795, 10.1007/s11172-015-1227-5.

[221] Effect of Nonsolvent Treatments on the Microstructure of PIM-1, M. L. Jue, C. S. McKay, B. A. McCool, M. G. Finn, R. P. Liyely, Macromolecules 2015, 48, 5780-5790, 10.1021/acs.macromol.5b01507.

[222] Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM) (vol 436, pg 109, 2013), M. M. Khan, V. Filiz, G. Bengtson, S. Shishatskiy, M. M. Rahman, J. Lillepaerg, V. Abetz, Journal of Membrane Science 2015, 476, 610-611, 10.1016/j.memsci.2015.01.002.

[223] Free Volume and Gas Permeation in Anthracene Maleimide-Based Polymers of Intrinsic Microporosity, M. M. Khan, V. Filiz, T. Emmler, V. Abetz, T. Koschine, K. Raetzke, F. Faupel, W. Egger, L. Ravelli, Membranes 2015, 5, 214-227, 10.3390/membranes5020214.

[224] Rigid and microporous polymers for gas separation membranes, S. Kim, Y. M. Lee, Progress in Polymer Science 2015, 43, 1-32, 10.1016/j.progpolymsci.2014.10.005.

[225] Electrocatalytic Carbohydrate Oxidation with 4-Benzoyloxy-TEMPO Heterogenised in a Polymer of Intrinsic Microporosity, A. Kolodziej, S. D. Ahn, M. Carta, R. Malpass-Evans, N. B. McKeown, R. S. L. Chapman, S. D. Bull, F. Marken, Electrochimica Acta 2015, 160, 195-201, 10.1016/j.electacta.2015.01.106.

[226] Correlation of Gas Permeation and Free Volume in New and used High Free Volume Thin Film Composite Membranes, T. Koschine, K. Raetzke, F. Faupel, M. M. Khan, T. Emmler, V. Filiz, V. Abetz, L. Ravelli, W. Egger, Journal of Polymer Science Part B-Polymer Physics 2015, 53, 213-217, 10.1002/polb.23616.

[227] Gas-Separation Membranes Loaded with Porous Aromatic Frameworks that Improve with Age, C. H. Lau, K. Konstas, A. W. Thornton, A. C. Y. Liu, S. Mudie, D. F. Kennedy, S. C. Howard, A. J. Hill, M. R. Hill, Angewandte Chemie-International Edition 2015, 54, 2669-2673, 10.1002/anie.201410684.

[228] Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries, C. Li, A. L. Ward, S. E. Doris, T. A. Pascal, D. Prendergast, B. A. Helms, Nano Letters 2015, 15, 5724-5729, 10.1021/acs.nanolett.5b02078.

[229] Self-healing anti-corrosion coatings based on polymers of intrinsic microporosity for the protection of aluminum alloy, Z. Li, B. Qin, X. Zhang, K. Wang, Y. Wei, Y. Ji, Rsc Advances 2015, 5, 104451-104457,

[230] Triptycene-Based Microporous Polymer Incorporating Thioamide Functionality: Preparation and Gas Storage Properties, L. Liu, Y. Xia, J. Zhang, Journal of Polymer Science Part a-Polymer Chemistry 2015, 53, 2193-2197, 10.1002/pola.27709.

[231] Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation, S. Luo, Q. Liu, B. Zhang, J. R. Wiegand, B. D. Freeman, R. Guo, Journal of Membrane Science 2015, 480, 20-30, 10.1016/j.memsci.2015.01.043.

[232] Synthesis and Effect of Physical Aging on Gas Transport Properties of a Microporous Polyimide Derived from a Novel Spirobifluorene-Based Dianhydride, X. Ma, B. Ghanem, O. Salines, E. Litwiller, I. Pinnau, Acs Macro Letters 2015, 4, 231-235, 10.1021/acsmacrolett.5b00009.

[233] Water desalination concept using an ionic rectifier based on a polymer of intrinsic microporosity (PIM), E. Madrid, P. Cottis, Y. Rong, A. T. Rogers, J. M. Stone, R. Malpass-Evans, M. Carta, N. B. McKeownd, F. Marken, Journal of Materials Chemistry A 2015, 3, 15849-15853, 10.1039/c5ta04092b.

[234] Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties, T. O. McDonald, R. Akhtar, C. H. Lau, T. Ratvijitvech, G. Cheng, R. Clowes, D. J. Adams, T. Hasell, A. I. Cooper, Journal of Materials Chemistry A 2015, 3, 4855-4864, 10.1039/c4ta06070a.

[235] Sub-micron Polymer-Zeolitic Imidazolate Framework Layered Hybrids via Controlled Chemical Transformation of Naked ZnO Nanocrystal Films, S. M. Meckler, C. Li, W. L. Queen, T. E. Williams, J. R. Long, R. Buonsanti, D. J. Milliron, B. A. Helms, Chemistry of Materials 2015, 27, 7673-7679, 10.1021/acs.chemmater.5b03219.

[236] UV-Visible and Plasmonic Nanospectroscopy of the CO2 Adsorption Energetics in a Microporous Polymer, F. A. A. Nugroho, C. Xu, N. Hedin, C. Langhammer, Analytical Chemistry 2015, 87, 10161-10165, 10.1021/acs.analchem.5b03108.

[237] Soluble, microporous ladder polymers formed by stepwise nucleophilic substitution of octafluorocyclopentene, K. Ranganathan, P. Anbanandam, Polymer Chemistry 2015, 6, 4560-4564, 10.1039/c5py00359h.

[238] Intrinsically Microporous Polymer Retains Porosity in Vacuum Thermolysis to Electroactive Heterocarbon, Y. Rong, D. He, A. Sanchez-Fernandez, C. Evans, K. J. Edler, R. Malpass-Evans, M. Carta, N. B. McKeown, T. J. Clarke, S. H. Taylor, A. J. Wain, J. M. Mitchels, F. Marken, Langmuir 2015, 31, 12300-12306, 10.1021/acs.langmuir.5b02654.

[239] Highly Permeable Benzotriptycene-Based Polymer of Intrinsic Microporosity, I. Rose, M. Carta, R. Malpass-Evans, M.-C. Ferrari, P. Bernardo, G. Clarizia, J. C. Jansen, N. B. McKeown, Acs Macro Letters 2015, 4, 912-915, 10.1021/acsmacrolett.5b00439.

[240] Hydroxyalkylaminoalkylamide PIMs: Selective Adsorption by Ethanolamine- and Diethanolamine-Modified PIM-1, B. Satilmis, M. N. Alnajrani, P. M. Budd, Macromolecules 2015, 48, 5663-5669, 10.1021/acs.macromol.5b01196.

[241] Competitive Permeation of Gas and Water Vapour in High Free Volume Polymeric Membranes, C. A. Scholes, J. Jin, G. W. Stevens, S. E. Kentish, Journal of Polymer Science Part B-Polymer Physics 2015, 53, 719-728, 10.1002/polb.23689.

[242] Comparison of thin film composite and microporous membrane contactors for CO2 absorption into monoethanolamine, C. A. Scholes, S. E. Kentish, G. W. Stevens, D. de Montigny, Int. J. Greenhouse Gas Control 2015, 42, 66-74, 10.1016/j.ijggc.2015.07.032.

[243] Thin-film composite membrane contactors for desorption of CO2 from Monoethanolamine at elevated temperatures, C. A. Scholes, S. E. Kentish, G. W. Stevens, J. Jin, D. deMontigny, Separation and Purification Technology 2015, 156, 841-847,

[244] Effect of methanol treatment on gas sorption and transport behavior of intrinsically microporous polyimide membranes incorporating Troger’s base, J. G. Seong, Y. Zhuang, S. Kim, Y. S. Do, W. H. Lee, M. D. Guiver, Y. M. Lee, Journal of Membrane Science 2015, 480, 104-114, 10.1016/j.memsci.2015.01.022.

[245] Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes, S. J. D. Smith, B. P. Ladewig, A. J. Hill, C. H. Lau, M. R. Hill, Scientific Reports 2015, 5, 10.1038/srep07823.

[246] Effects of hydroxyl-functionalization and sub-T-g thermal annealing on high pressure pure- and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing, R. Swaidan, B. Ghanem, E. Litwiller, I. Pinnau, Journal of Membrane Science 2015, 475, 571-581, 10.1016/j.memsci.2014.10.046.

[247] Physical Aging, Plasticization and Their Effects on Gas Permeation in “Rigid” Polymers of Intrinsic Microporosity, R. Swaidan, B. Ghanem, E. Litwiller, I. Pinnau, Macromolecules 2015, 48, 6553-6561, 10.1021/acs.macromol.5b01581.

[248] Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations, R. Swaidan, B. Ghanem, I. Pinnau, Acs Macro Letters 2015, 4, 947-951, 10.1021/acsmacrolett.5b00512.

[249] Pure- and mixed-gas propylene/propane permeation properties of spiro- and triptycene-based microporous polyimides, R. J. Swaidan, B. Ghanem, R. Swaidan, E. Litwiller, I. Pinnau, Journal of Membrane Science 2015, 492, 116-122, 10.1016/j.memsci.2015.05.044.

[250] Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous hydroxyl-functionalized polyimide membrane, R. J. Swaidan, X. Ma, E. Litwiller, I. Pinnau, Journal of Membrane Science 2015, 495, 235-241, 10.1016/j.memsci.2015.08.015.

[251] Preparation and characterization of spirobisindane linked porphyrins-based polyamide networks with intrinsic microporosity and catalyst of Knoevenagel condensation, J.-y. Wang, Q. Wu, Y. Jiang, C.-l. Zhang, X.-k. Liu, Gongneng Gaofenzi Xuebao 2015, 28, 26-31,

[252] Chiral Polymers of Intrinsic Microporosity: Selective Membrane Permeation of Enantiomers, X. Weng, J. E. Baez, M. Khiterer, M. Y. Hoe, Z. Bao, K. J. Shea, Angewandte Chemie-International Edition 2015, 54, 11214-11218, 10.1002/anie.201504934.

[253] Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol, X. M. Wu, Q. G. Zhang, P. J. Lin, Y. Qu, A. M. Zhu, Q. L. Liu, Journal of Membrane Science 2015, 493, 147-155, 10.1016/j.memsci.2015.05.077.

[254] A high-performance hydroxyl-functionalized polymer of intrinsic microporosity for an environmentally attractive membrane-based approach to decontamination of sour natural gas, S. Yi, X. Ma, I. Pinnau, W. J. Koros, Journal of Materials Chemistry A 2015, 3, 22794-22806, 10.1039/c5ta05928c.

[255] Miscible blends of carboxylated polymers of intrinsic microporosity (cPIM-1) and Matrimid, W. F. Yong, T.-S. Chung, Polymer 2015, 59, 290-297, 10.1016/j.polymer.2015.01.013.

[256] Suppression of aging and plasticization in highly permeable polymers, W. F. Yong, K. H. A. Kwek, K.-S. Liao, T.-S. Chung, Polymer 2015, 77, 377-386, 10.1016/j.polymer.2015.09.075.

[257] Study of glassy polymers fractional accessible volume (FAV) by extended method of hydrostatic weighing: Effect of porous structure on liquid transport, A. Yushkin, A. Grekhov, S. Matson, M. Bermeshev, V. Khotimsky, E. Finkelstein, P. M. Budd, V. Volkov, T. J. H. Vlugt, A. Volkov, Reactive & Functional Polymers 2015, 86, 269-281, 10.1016/j.reactfunctpolym.2014.06.010.

[258] Selective removal of butanol from aqueous solution by pervaporation with a PIM-1 membrane and membrane aging, M. Zak, M. Klepic, L. C. Stastna, Z. Sedlakova, H. Vychodilova, S. Hovorka, K. Friess, A. Randova, L. Brozova, J. C. Jansen, M. R. Khdhayyer, P. M. Budd, P. Izak, Separation and Purification Technology 2015, 151, 108-114, 10.1016/j.seppur.2015.07.041.

[259] Electrospun Microfibrous Membranes Based on PIM-1/POSS with High Oil Wettability for Separation of Oil-Water Mixtures and Cleanup of Oil Soluble Contaminants, C. Zhang, P. Li, B. Cao, Industrial & Engineering Chemistry Research 2015, 54, 8772-8781, 10.1021/acs.iecr.5b02321.

2016

[260] Synthesis of perfectly alternating copolymers for polymers of intrinsic microporosity, J. Zhang, J. Jin, R. Cooney, Q. Fu, G. G. Qiao, S. Thomas, T. C. Merkel, Polymer Chemistry 2015, 6, 5003-5008, 10.1039/c5py00570a.

[261] Fluoride-mediated polycondensation for the synthesis of polymers of intrinsic microporosity, J. Zhang, J. Jin, R. Cooney, S. Zhang, Polymer 2015, 76, 168-172, 10.1016/j.polymer.2015.08.066.

[262] Synthesis of polymers of intrinsic microporosity using an AB-type monomer, J. Zhang, J. Jin, R. Cooney, S. Zhang, Polymer 2015, 57, 45-50, 10.1016/j.polymer.2014.12.010.

[263] Advancing polymers of intrinsic microporosity by mechanochemistry, P. Zhang, X. Jiang, S. Wan, S. Dai, Journal of Materials Chemistry A 2015, 3, 6739-6741, 10.1039/c4ta07196d.

[264] Polymer of Intrinsic Microporosity Induces Host-Guest Substrate Selectivity in Heterogeneous 4-Benzoyloxy-TEMPO-Catalysed Alcohol Oxidations, S. D. Ahn, A. Kolodziej, R. Malpass-Evans, M. Carta, N. B. McKeown, S. D. Bull, A. Buchard, F. Marken, Electrocatalysis 2016, 7, 70-78, 10.1007/s12678-015-0284-8.

[265] Pure- and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation, N. Alaslai, B. Ghanem, F. Alghunaimi, E. Litwiller, I. Pinnau, Journal of Membrane Science 2016, 505, 100-107, 10.1016/j.memsci.2015.12.053.

[266] High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation, N. Alaslai, B. Ghanem, F. Alghunaimi, I. Pinnau, Polymer 2016, 91, 128-135, 10.1016/j.polymer.2016.03.063.

[267] Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers, M. Alberto, J. M. Luque-Alled, L. Gao, M. Iliut, E. Prestat, L. Newman, S. J. Haigh, A. Vijayaraghavan, P. M. Budd, P. Gorgojo, Journal of Membrane Science 2016, 10.1016/j.memsci.2016.07.058.

[268] Triptycene dimethyl-bridgehead dianhydride-based intrinsically microporous hydroxyl-functionalized polyimide for natural gas upgrading, F. Alghunaimi, B. Ghanem, N. Alaslai, M. Mukaddam, I. Pinnau, Journal of Membrane Science 2016, 520, 240-246, 10.1016/j.memsci.2016.07.058.

[269] The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1, K. Althumayri, W. J. Harrison, Y. Y. Shin, J. M. Gardiner, C. Casiraghi, P. M. Budd, P. Bernardo, G. Clarizia, J. C. Jansen, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 2016, 374, 10.1098/rsta.2015.0031.

[270] Light-switchable polymers of intrinsic microporosity, D. Becker, N. Konnertz, M. Böhning, J. Schmidt, A. Thomas, Chemistry of Materials 2016, 28, 8523-8529, 10.1021/acs.chemmater.6b02619.

[271] Toward an Understanding of the Microstructure and Interfacial Properties of PIMs/ZIF-8 Mixed Matrix Membranes, M. Benzaqui, R. Semino, N. Menguy, F. Carn, T. Kundu, J.-M. Guigner, N. B. McKeown, K. J. Msayib, M. Carta, R. Malpass-Evans, ACS Applied Materials & Interfaces 2016, 8, 27311-27321, 10.1021/acsami.6b08954.

[272] Mixed Matrix Membranes Based on PIMs for Gas Permeation: Principles, Synthesis, and Current Status, R. Castro-Muñoz, V. Fíla, C. T. Dung, Chemical Engineering Communications 2016, 10.1080/00986445.2016.1273832.

[273] Ultra‐High Proton/Vanadium Selectivity for Hydrophobic Polymer Membranes with Intrinsic Nanopores for Redox Flow Battery, I. S. Chae, T. Luo, G. H. Moon, W. Ogieglo, Y. S. Kang, M. Wessling, Advanced Energy Materials 2016, 6, 10.1002/aenm.201600517.

[274] Evaluation of a passive optical based end of service life indicator (ESLI) for organic vapor respirator cartridges, M. Checky, K. Frankel, D. Goddard, E. Johnson, J. C. Thomas, M. Zelinsky, C. Javner, Journal of Occupational and Environmental Hygiene 2016, 13, 112-120, 10.1080/15459624.2015.1091956.

[275] Structural characteristics and transport behavior of triptycene-based PIMs membranes: A combination study using ab initio calculation and molecular simulations, Y. R. Chen, L. H. Chen, K. S. Chang, T. H. Chen, Y. F. Lin, K. L. Tung, Journal of Membrane Science 2016, 514, 114-124, 10.1016/j.memsci.2016.04.063.

[276] Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes, E. Chernova, D. Petukhov, O. Boytsova, A. Alentiev, P. Budd, Y. Yampolskii, A. Eliseev, Scientific Reports 2016, 6, No. 31183, 10.1038/srep31183.

[277] Porous Organic Materials: Strategic Design and Structure–Function Correlation, S. Das, P. Heasman, T. Ben, S. Qiu, Chemical Reviews 2016, 10.1021/acs.chemrev.6b00439.

[278] Understanding and controlling the chemical evolution and polysulfide-blocking ability of lithium–sulfur battery membranes cast from polymers of intrinsic microporosity, S. E. Doris, A. L. Ward, P. D. Frischmann, L. Li, B. A. Helms, Journal of Materials Chemistry A 2016, 4, 16946-16952, 10.1039/C6TA06401A

[279] Integration of multi-stage membrane carbon capture processes to coal-fired power plants using highly permeable polymers, M. C. Ferrari, D. Bocciardo, S. Brandani, Green Energy & Environment 2016, doi.org/10.1016/j.gee.2016.1010.1001,

[280] Improved gas selectivity of polyetherimide membrane by the incorporation of PIM polyimide phase, M. G. García, J. Marchese, N. A. Ochoa, Journal of Applied Polymer Science 2016, 10.1002/app.44682.

[281] Mixed gas sorption in glassy polymeric membranes. III. CO 2/CH 4 mixtures in a polymer of intrinsic microporosity (PIM-1): effect of temperature, A. E. Gemeda, M. G. De Angelis, N. Du, N. Li, M. D. Guiver, G. C. Sarti, Journal of Membrane Science 2016, 10.1016/j.memsci.2016.11.053.

[282] Novel 6FDA-based polyimides derived from sterically hindered Troger’s base diamines: Synthesis and gas permeation properties, B. Ghanem, N. Alaslai, X. H. Miao, I. Pinnau, Polymer 2016, 96, 13-19, 10.1016/j.polymer.2016.04.068.

[283] New phenazine-containing ladder polymer of intrinsic microporosity from a spirobisindane-based AB-type monomer, B. Ghanem, F. Alghunaimi, N. Alaslai, X. Ma, I. Pinnau, RSC Advances 2016, 6, 79625-79630, 10.1039/C6RA16393A.

[284] Synthesis and characterization of novel triptycene dianhydrides and polyimides of intrinsic microporosity based on 3, 3ʹ-dimethylnaphthidine, B. Ghanem, F. Alghunaimi, X. Ma, N. Alaslai, I. Pinnau, Polymer 2016, 101, 225-232, 10.1016/j.polymer.2016.08.075.

[285] Interplay of inlet temperature and humidity on energy penalty for CO 2 post-combustion capture: Rigorous analysis and simulation of a single stage gas permeation process, L. Giordano, D. Roizard, R. Bounaceur, E. Favre, Energy 2016, 116, 517-525,

[286] Molecularly Rigid Microporous Polyamine Captures and Stabilizes Conducting Platinum Nanoparticle Networks, D. He, D. S. He, J. Yang, Z.-X. Low, R. Malpass-Evans, M. Carta, N. B. McKeown, F. Marken, ACS applied materials & interfaces 2016, 8, 22425-22430, 10.1021/acsami.6b04144.

[287] Fuel cell anode catalyst performance can be stabilized with a molecularly rigid film of polymers of intrinsic microporosity (PIM), D. P. He, Y. Y. Rong, M. Carta, R. Malpass-Evans, N. B. McKeown, F. Marken, Rsc Advances 2016, 6, 9315-9319, 10.1039/c5ra25320a.

[288] R. E. Hefner, B. L. Cramm, Dow Global Technologies LLC, USA . 2016, p. 34pp.

[289] R. E. Hefner, B. L. Cramm, I. A. Tomlinson, L. M. Huffman, A. Roy, Dow Global Technologies LLC, USA . 2016, p. 36pp.

[290] B. A. Helms, C. Li, A. Ward, S. E. Doris, P. D. Frischmann, University of California, USA . 2016, p. 112pp.

[291] An anion-conductive microporous membrane composed of a rigid ladder polymer with a spirobiindane backbone, F. Ishiwari, T. Sato, H. Yamazaki, J. N. Kondo, S. Miyanishi, T. Yamaguchi, T. Fukushima, Journal of Materials Chemistry A 2016, 4, 17655-17659, 10.1039/C6TA07576B

[292] Polymer nanofilms with enhanced microporosity by interfacial polymerization, M. F. Jimenez-Solomon, Q. L. Song, K. E. Jelfs, M. Munoz-Ibanez, A. G. Livingston, Nature Materials 2016, 15, 760-+, 10.1038/nmat4638.

[293] M. Kang, B. Hao, B. K. Nelson, 3M Innovative Properties Company, USA . 2016, p. No pp. given.

[294] A Carbonaceous Membrane based on a Polymer of Intrinsic Microporosity (PIM-1) for Water Treatment, H. J. Kim, D.-G. Kim, K. Lee, Y. Baek, Y. Yoo, Y. S. Kim, B. G. Kim, J.-C. Lee, Scientific Reports 2016, 6, 10.1038/srep36078.

[295] Molecular Mobility of the High Performance Membrane Polymer PIM-1 as Investigated by Dielectric Spectroscopy, N. Konnertz, Y. Ding, W. J. Harrison, P. M. Budd, A. Schonhals, M. Bohning, Acs Macro Letters 2016, 5, 528-532, 10.1021/acsmacrolett.6b00209.

[296] Effect of physical aging on the gas transport and sorption in PIM-1 membranes, M. Lanč, K. Pilnáček, O. Vopička, K. Friess, P. Bernardo, F. Bazzarelli, F. Tasselli, G. Clarizia, C. Mason, L. Maynard-Atem, Polymer 2016, 10.1016/j.polymer.2016.10.040.

[297] M. Laskoski, K. P. Sullivan, H. L. Ricks-Laskoski, C. L. Hill, American Chemical Society, 2016, pp. NERM-21.

[298] Effect of humidity and flue gas impurities on CO2 permeation of a polymer of intrinsic microporosity for post-combustion capture, E. Lasseuguette, M. Carta, S. Brandani, M. C. Ferrari, International Journal of Greenhouse Gas Control 2016, 50, 93-99, 10.1016/j.ijggc.2016.04.023.

[299] Development of microporous electrospun PIM-1 fibres, E. Lasseuguette, M.-C. Ferrari, Materials Letters 2016, 177, 116-119, 10.1016/j.matlet.2016.04.181.

[300] Synthesis and characterization of polyethersulfone with intrinsic microporosity, K. Lee, J. W. Jeon, B. M. Maeng, K. M. Huh, J. C. Won, Y. Yoo, Y. S. Kim, B. G. Kim, RSC Advances 2016, 6, 70320-70325, 10.1039/C6RA13034H

[301] Enhancing the Gas Permeability of Troger’s Base Derived Polyimides of Intrinsic Microporosity, M. Lee, C. G. Bezzu, M. Carta, P. Bernardo, G. Clarizia, J. C. Jansen, N. B. McKeown, Macromolecules 2016, 49, 4147-4154, 10.1021/acs.macromol.6b00351.

[302] Metal ion modified PIM-1 and its application for propylene/propane separation, K. S. Liao, J. Y. Lai, T. S. Chung, Journal of Membrane Science 2016, 515, 36-44, 10.1016/j.memsci.2016.05.032.

[303] C. W. Liskey, M. B. Hamoy, C. Liu, 2016, pp. US Patent 9,238,202.

[304] High-Performance Polymers for Membrane CO2/N2 Separation, J. Liu, X. Hou, H. B. Park, H. Lin, Chemistry-a European Journal 2016, 22, 15980-15990, 10.1002/chem.201603002.

[305] Finely Tuning the Free Volume Architecture in Iptycene-Containing Polyimides for Highly Selective and Fast Hydrogen Transport, S. J. Luo, J. R. Wiegand, B. Kazanowska, C. M. Doherty, K. Konstas, A. J. Hill, R. L. Guo, Macromolecules 2016, 49, 3395-3405, 10.1021/acs.macromol.6b00485.

[306] Bifunctionalized Intrinsically Microporous Polyimides with Simultaneously Enhanced Gas Permeability and Selectivity, X. Ma, M. Mukaddam, I. Pinnau, Macromolecular rapid communications 2016, 37, 900-904, 10.1002/marc.201600023.

[307] A novel intrinsically microporous ladder polymer and copolymers derived from 1, 1′, 2, 2′-tetrahydroxy-tetraphenylethylene for membrane-based gas separation, X. Ma, I. Pinnau, Polymer Chemistry 2016, 7, 1244-1248, 10.1039/C5PY01796C

[308] Reagentless Electrochemiluminescence from a Nanoparticulate Polymer of Intrinsic Microporosity (PIM‐1) Immobilized onto Tin‐Doped Indium Oxide, E. Madrid, D. He, J. Yang, C. F. Hogan, B. Stringer, K. J. Msayib, N. B. McKeown, P. R. Raithby, F. Marken, ChemElectroChem 2016, 3, 2160-2164, 10.1002/celc.201600419.

[309] Contorted separation, N. B. McKeown, Nature Materials 2016, 15, 706-707, 10.1038/nmat4680.

[310] PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers, T. Mitra, R. S. Bhavsar, D. J. Adams, P. M. Budd, A. I. Cooper, Chem. Commun. 2016, 52, 5581-5584, 10.1039/c6cc00261g.

[311] How Much Do Ultrathin Polymers with Intrinsic Microporosity Swell in Liquids?, W. Ogieglo, B. Ghanem, X. Ma, I. Pinnau, M. Wessling, The Journal of Physical Chemistry B 2016, 120, 10403-10410, 10.1021/acs.jpcb.6b06807.

[312] Octafluorocyclopentene–A versatile tetrafunctional monomer for making tunable, high surface area, microporous ladder polymers, A. Parthiban, K. Ranganathan, Journal of Fluorine Chemistry 2016, 191, 70-76, 10.1016/j.jfluchem.2016.09.013.

[313] Aging of polymers of intrinsic microporosity tracked by methanol vapour permeation, K. Pilnáček, O. Vopička, M. Lanč, M. Dendisová, M. Zgažar, P. M. Budd, M. Carta, R. Malpass-Evans, N. B. McKeown, K. Friess, Journal of Membrane Science 2016, 520, 895-906, 10.1016/j.memsci.2016.08.054.

[314] Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications, K. Polak-Kraśna, R. Dawson, L. T. Holyfield, C. R. Bowen, A. D. Burrows, T. J. Mays, Journal of Materials Science 2016, 1-14, doi:10.1007/s10853-016-0647-4.

[315] Dimethyl sulfoxide as a green solvent for successful precipitative polyheterocyclization based on nucleophilic aromatic substitution, resulting in high molecular weight PIM-1, I. I. Ponomarev, I. V. Blagodatskikh, A. V. Muranov, Y. A. Volkova, D. Y. Razorenov, P. I. I., K. M. Skupov, Mendeleev Communications 2016, 26, 362–364, 10.1016/j.mencom.2016.07.033.

[316] Review of polymers of intrinsic microporosity for hydrogen storage applications, D. Ramimoghadam, E. M. Gray, C. Webb, International Journal of Hydrogen Energy 2016, 41, 16944-16965, 10.1016/j.ijhydene.2016.07.134.

[317] Analysis of the Transport Properties of Thermally Rearranged (TR) Polymers and Polymers of Intrinsic Microporosity (PIM) Relative to Upper Bound Performance, L. M. Robeson, M. E. Dose, B. D. Freeman, D. R. Paul, Journal of Membrane Science 2016, 525, 18-24, 10.1016/j.memsci.2016.11.085.

[318] Polymers of intrinsic microporosity in electrochemistry: Anion uptake and transport effects in thin film electrodes and in free-standing ionic diode membranes, Y. Rong, A. Kolodziej, E. Madrid, M. Carta, R. Malpass-Evans, N. B. McKeown, F. Marken, Journal of Electroanalytical Chemistry 2016, 779, 241-249, 10.1016/j.jelechem.2015.11.038.

[319] pH-induced reversal of ionic diode polarity in 300nm thin membranes based on a polymer of intrinsic microporosity, Y. Rong, Q. Song, K. Mathwig, E. Madrid, D. He, R. G. Niemann, P. J. Cameron, S. E. Dale, S. Bending, M. Carta, Electrochemistry Communications 2016, 69, 41-45, doi.org/10.1016/j.elecom.2016.05.019.

[320] Development of high performance carboxylated PIM-1/P84 blend membranes for pervaporation dehydration of isopropanol and CO 2/CH 4 separation, P. Salehian, W. F. Yong, T.-S. Chung, Journal of Membrane Science 2016, 518, 110-119, doi.org/10.1016/j.memsci.2016.06.027.

[321] High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide, O. Salinas, X. Ma, E. Litwiller, I. Pinnau, Journal of Membrane Science 2016, 500, 115-123, doi.org/10.1016/j.memsci.2015.11.013.

[322] Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1), O. Salinas, X. H. Ma, E. Litwiller, I. Pinnau, Journal of Membrane Science 2016, 504, 133-140, 10.1016/j.memsci.2015.12.052.

[323] High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide, O. Salinas, X. H. Ma, E. Litwiller, I. Pinnau, Journal of Membrane Science 2016, 500, 115-123, 10.1016/j.memsci.2015.11.013.

[324] Selective dye adsorption by chemically-modified and thermally-treated polymers of intrinsic microporosity, B. Satilmis, P. M. Budd, Journal of Colloid and Interface Science 2016, doi.org/10.1016/j.jcis.2016.12.048.

[325] Hydrocarbon solubility, permeability, and competitive sorption effects in polymer of intrinsic microporosity (PIM-1) membranes, C. A. Scholes, J. Y. Jin, G. W. Stevens, S. E. Kentish, Journal of Polymer Science Part B-Polymer Physics 2016, 54, 397-404, 10.1002/polb.23900.

[326] Separation of carbon dioxide from flue gas by mixed matrix membranes using dual phase microporous polymeric constituents, A. K. Sekizkardes, V. A. Kusuma, G. Dahe, E. A. Roth, L. J. Hill, A. Marti, M. Macala, S. R. Venna, D. Hopkinson, Chem. Commun. 2016, 52, 11768-11771, 10.1039/C6CC04811K.

[327] Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity, Y. Y. Shin, E. Prestat, K. G. Zhou, P. Gorgojo, K. Althumayri, W. Harrison, P. M. Budd, S. J. Haigh, C. Casiraghi, Carbon 2016, 102, 357-366, 10.1016/j.carbon.2016.02.037.

[328] Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes, Q. L. Song, S. Cao, R. H. Pritchard, H. Qiblawey, E. M. Terentjev, A. K. Cheetham, E. Sivaniah, Journal of Materials Chemistry A 2016, 4, 270-279, 10.1039/c5ta09060a.

[329] Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation, R. J. Swaidan, X. Ma, I. Pinnau, Journal of Membrane Science 2016, 520, 983-989, doi.org/10.1016/j.memsci.2016.08.057.

[330] The Synthesis of Organic Molecules of Intrinsic Microporosity Designed to Frustrate Efficient Molecular Packing, R. G. D. Taylor, C. G. Bezzu, M. Carta, K. J. Msayib, J. Walker, R. Short, B. M. Kariuki, N. B. McKeown, Chemistry-a European Journal 2016, 22, 2466-2472, 10.1002/chem.201504212.

[331] Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity, Z. Z. Tian, S. F. Wang, Y. T. Wang, X. R. Ma, K. T. Cao, D. D. Peng, X. Y. Wu, H. Wu, Z. Y. Jiang, Journal of Membrane Science 2016, 514, 15-24, 10.1016/j.memsci.2016.04.019.

[332] Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes, N. Tien-Binh, H. Vinh-Thang, X. Y. Chen, D. Rodrigue, S. Kaliaguine, Journal of Membrane Science 2016, 520, 941-950, doi.org/10.1016/j.memsci.2016.08.045.

[333] Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance, Z. G. Wang, D. Wang, S. X. Zhang, L. Hu, J. Jin, Advanced Materials 2016, 28, 3399-3405, 10.1002/adma.201504982.

[334] C. D. Wood, X. Mulet, C. H. Lau, M. R. Hill, Commonwealth Scientific and Industrial Research Organisation, Australia . 2016, p. 77pp.

[335] Pervaporation Purification of Ethylene Glycol Using the Highly Permeable PIM-1 Membrane, X. M. Wu, H. Guo, F. Soyekwo, Q. G. Zhang, C. X. Lin, Q. L. Liu, A. M. Zhu, Journal of Chemical and Engineering Data 2016, 61, 579-586, 10.1021/acs.jced.5b00731.

[336] Pervaporation removal of volatile organic compounds from aqueous solutions using the highly permeable PIM-1 membrane, X. M. Wu, Q. G. Zhang, F. Soyekwo, Q. L. Liu, A. M. Zhu, Aiche Journal 2016, 62, 842-851, 10.1002/aic.15077.

[337] Facile conversion of nitrile to amide on polymers of intrinsic microporosity (PIM-1), P. Yanaranop, B. Santoso, R. Etzion, J. Jin, Polymer 2016, 98, 244-251, doi.org/10.1016/j.polymer.2016.06.041.

[338] Highly Conductive Anion-Exchange Membranes from Microporous Troger_s Base Polymers, Z. Yang, R. Guo, R. Malpass-Evans, M. Carta, N. B. McKeown, M. D. Guiver, L. Wu, T. Xu, Angewandte Chemie-International Edition 2016, 55, 11499–11502 DOI: 10.1002/anie.201605916.

[339] Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation, W. F. Yong, Z. K. Lee, T. S. Chung, M. Weber, C. Staudt, C. Maletzko, ChemSusChem 2016, 9, 1953-1962, DOI: 10.1002/cssc.201600354.

[340] Selective adsorption and separation of organic dyes in aqueous solutions by hydrolyzed PIM-1 microfibers, C. Zhang, P. Li, W. Huang, B. Cao, Chemical Engineering Research and Design 2016, 109, 76-85, doi.org/10.1016/j.cherd.2016.01.006.

[341] Electrospun polymer of intrinsic microporosity fibers and their use in the adsorption of contaminants from a nonaqueous system, C. L. Zhang, P. Li, B. Cao, Journal of Applied Polymer Science 2016, 133, 10.1002/app.43475.

[342] Fabrication of Superhydrophobic-Superoleophilic Fabrics by an Etching and Dip-Coating Two-Step Method for Oil-Water Separation, C. L. Zhang, P. Li, B. Cao, Industrial & Engineering Chemistry Research 2016, 55, 5030-5035, 10.1021/acs.iecr.6b00206.

[343] The enhancement of chain rigidity and gas transport performance of polymers of intrinsic microporosity via intramolecular locking of the spiro-carbon, J. Zhang, H. Kang, J. Martin, S. H. Zhang, S. Thomas, T. C. Merkel, J. Y. Jin, Chem. Commun. 2016, 52, 6553-6556, 10.1039/c6cc02308h.

[344] High performance post-modified polymers of intrinsic microporosity (PIM-1) membranes based on multivalent metal ions for gas separation, H. Y. Zhao, Q. Xie, X. L. Ding, J. M. Chen, M. M. Hua, X. Y. Tan, Y. Z. Zhang, Journal of Membrane Science 2016, 514, 305-312, 10.1016/j.memsci.2016.05.013.

[345] High-strength, soluble polyimide membranes incorporating Troger’s Base for gas separation, Y. Zhuang, J. G. Seong, Y. S. Do, W. H. Lee, M. J. Lee, M. D. Guiver, Y. M. Lee, Journal of Membrane Science 2016, 504, 55-65, 10.1016/j.memsci.2015.12.057.

[346] Soluble, microporous, Troger’s Base copolyimides with tunable membrane performance for gas separation, Y. B. Zhuang, J. G. Seong, Y. S. Do, W. H. Lee, M. J. Lee, Z. Cui, A. E. Lozano, M. D. Guiver, Y. M. Lee, Chem. Commun. 2016, 52, 3817-3820, 10.1039/c5cc09783e.

Advertisements