1. Switching of the conformational flexibility of a diazacyclooctane-containing ladder polymer by coordination and elimination of a Lewis acid. F. Ishiwari; M. Ofuchi; K. Inoue; Y. Seib; T. Fukushima, Polymer Chemistry 2020, 11 (2), 236-240, https://doi.org/10.1039/c9py01104h.
  2. Nanofiltration membranes from crosslinked Troger’s base Polymers of Intrinsic Microporosity (PIMs). P. Agarwal; R. E. Hefner; S. Ge; I. Tomlinson; Y. Rao; T. Dikic, J. Membr. Sci. 2020, 595, 117501, https://doi.org/10.1016/j.memsci.2019.117501.
  3. P. M. Budd, Chapter 9 – Polymers of Intrinsic Microporosity and Their Potential in Process Intensification. In Sustainable Nanoscale Engineering, Szekely, G.; Livingston, A., Eds. Elsevier: 2020; pp 231-264.
  4. Comparison of pure and mixed gas permeation of the highly fluorinated polymer of intrinsic microporosity PIM-2 under dry and humid conditions: Experiment and modelling. A. Fuoco; B. Satilmis; T. Uyar; M. Monteleone; E. Esposito; C. Muzzi; E. Tocci; M. Longo; M. P. De Santo; M. Lanč; K. Friess; O. Vopička; P. Izák; J. C. Jansen, J. Membr. Sci. 2020, 594, 117460, https://doi.org/10.1016/j.memsci.2019.117460.
  5. Blend anion exchange membranes containing polymer of intrinsic microporosity for fuel cell application. S. Gong; L. Li; L. Ma; N. A. Qaisrani; J. Liu; G. He; F. Zhang, J. Membr. Sci. 2020, 595, 117541, https://doi.org/10.1016/j.memsci.2019.117541.
  6. Highly selective surface adsorption-induced efficient photodegradation of cationic dyes on hierarchical ZnO nanorod-decorated hydrolyzed PIM-1 nanofibrous webs. K. S. Ranjith; B. Satilmis; Y. S. Huh; Y.-K. Han; T. Uyar, J. Colloid Interface Sci. 2020, 562, 29-41, https://doi.org/10.1016/j.jcis.2019.11.096.
  7. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage (December, 10.1038/S41563-019-0536-8, 2019). R. Tan; A. Q. Wang; R. Malpass-Evans; R. Williams; E. W. Zhao; T. Liu; C. C. Ye; X. Q. Zhou; B. P. Darwich; Z. Y. Fan; L. Turcani; E. Jackson; L. J. Chen; S. Y. Chong; T. Li; K. E. Jelfs; A. I. Cooper; N. P. Brandon; C. P. Grey; N. B. McKeown; Q. L. Song, Nat Mater 2020, 19, 195-202, https://doi.org/10.1038/s41563-019-0593-z.
  8. Adamantane-grafted polymer of intrinsic microporosity with finely tuned interchain spacing for improved CO2 separation performance. Z. G. Wang; Q. Shen; J. C. Liang; Y. T. Zhang; J. Jin, Sep. Purif. Technol. 2020, 233, https://doi.org/10.1016/j.seppur.2019.116008.
  9. Accelerating CO2 capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework. X. Y. Wu; Y. X. Ren; G. M. Sui; G. Z. Wang; G. S. Xu; L. X. Yan; Y. Z. Wu; G. W. He; N. Nasir; H. Wu; Z. Y. Jiang, AlChE J. 2020, 66 (2), https://doi.org/10.1002/aic.16800.
  10. PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries. Q. Yang; W. Li; C. Dong; Y. Ma; Y. Yin; Q. Wu; Z. Xu; W. Ma; C. Fan; K. Sun, Journal of Energy Chemistry 2020, 42, 83-90, https://doi.org/10.1016/j.jechem.2019.06.012.
  11. Gas separation performance and mechanical properties of thermally-rearranged polybenzoxazoles derived from an intrinsically microporous dihydroxyl-functionalized triptycene diamine-based polyimide. A. Yerzhankyzy; B. S. Ghanem; Y. Wang; N. Alaslai; I. Pinnau, J. Membr. Sci. 2020, 595, 117512, https://doi.org/10.1016/j.memsci.2019.117512.