2017

2017

[347]   Synthesis and characterization of a microporous 6FDA-polyimide made from a novel carbocyclic pseudo Troger’s base diamine: Effect of bicyclic bridge on gas transport properties. Abdulhamid, M. A., Ma, X. H., Miao, X. H. & Pinnau, I. Polymer 2017, 130, 182-190, doi:10.1016/j.polymer.2017.10.017.

[348]   Synthesis and characterization of metalorganic polymers of intrinsic microporosity based on iron(II) clathrochelate. Alameddine, B., Shetty, S., Baig, N., Al-Mousawi, S. & Al-Sagheer, F. Polymer 2017, 122, 200-207, doi:10.1016/j.polymer.2017.06.048.

[349]   Synthesis and Characterization of a Novel Microporous Dihydroxyl-Functionalized Triptycene-Diamine-Based Polyimide for Natural Gas Membrane Separation. Alaslai, N., Ma, X. H., Ghanem, B., Wang, Y. G., Alghunaimi, F. & Pinnau, I. Macromolecular Rapid Communications 2017, 38, doi:10.1002/marc.201700303.

[350]   Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers. Alberto, M., Luque-Alled, J. M., Gao, L., Iliut, M., Prestat, E., Newman, L., Haigh, S. J., Vijayaraghavan, A., Budd, P. M. & Gorgojo, P. Journal of Membrane Science 2017, 526, 437-449, doi:10.1016/j.memsci.2016.12.061.

[351]   Synthesis and gas permeation properties of a novel thermally-rearranged polybenzoxazole made from an intrinsically microporous hydroxyl-functionalized triptycene-based polyimide precursor. Alghunaimi, F., Ghanem, B., Wang, Y. G., Salinas, O., Alaslai, N. & Pinnau, I. Polymer 2017, 121, 9-16, doi:10.1016/j.polymer.2017.06.006.

[352]   A porphyrin-based microporous network polymer that acts as an efficient catalyst for cyclooctene and cyclohexane oxidation under mild conditions. Antonangelo, A. R., Grazia Bezzu, C., Mughal, S. S., Malewschik, T., McKeown, N. B. & Nakagaki, S. Catalysis Communications 2017, 99, 100-104, doi:10.1016/j.catcom.2017.05.024.

[353]   Membranes of Polymers of Intrinsic Microporosity (PIM-1) Modified by Poly(ethylene glycol). Bengtson, G., Neumann, S. & Filiz, V. Membranes 2017, 7, doi:10.3390/membranes7020028.

[354]   Ultrathin Composite Polymeric Membranes for CO2/N-2 Separation with Minimum Thickness and High CO2 Permeance. Benito, J., Sanchez-Lainez, J., Zornoza, B., Martin, S., Carta, M., Malpass-Evans, R., Tellez, C., McKeown, N. B., Coronas, J. & Gascon, I. Chemsuschem 2017, 10, 4014-4017, doi:10.1002/cssc.201701139.

[355]   Effect of physical aging on the gas transport and sorption in PIM-1 membranes. Bernardo, P., Bazzarelli, E., Tasselli, F., Clarizia, G., Mason, C. R., Maynard-Atem, L., Budd, P. M., Lanc, M., Pilnacek, K., Vopicka, O., Friess, K., Fritsch, D., Yampolskii, Y. P., Shantarovich, V. & Jansen, J. C. Polymer 2017, 113, 283-294, doi:10.1016/j.polymer.2016.10.040.

[356]   Gas separation properties of Troeger’s base-bridged polyamides. Bisoi, S., Mandal, A. K., Singh, A. & Banerjee, S. E-Polymers 2017, 17, 283-293, doi:10.1515/epoly-2016-0291.

[357]   Polymers of Intrinsic Microporosity derived from a carbocyclic analogue of Troger’s base. Carta, M., Bezzu, C. G., Vile, J., Kariuki, B. M. & McKeown, N. B. Polymer 2017, 126, 324-329, doi:10.1016/j.polymer.2017.03.037.

[358]   Mixed Matrix Membranes Based on PIMs for Gas Permeation: Principles, Synthesis, and Current Status. Castro-Munoz, R., Fila, V. & Dung, C. T. Chemical Engineering Communications 2017, 204, 295-309, doi:10.1080/00986445.2016.1273832.

[359]   Trends and challenges for microporous polymers. Chaoui, N., Trunk, M., Dawson, R., Schmidt, J. & Thomas, A. Chemical Society Reviews 2017, 46, 3302-3321, doi:10.1039/C7CS00071E.

[360]   Toward improved hydrophilicity of polymers of intrinsic microporosity for pervaporation dehydration of ethylene glycol. Chen, M., Wu, X., Soyekwo, F., Zhang, Q., Lv, R., Zhu, A. & Liu, Q. Separation and Purification Technology 2017, 174, 166-173.

[361]   Toward improved hydrophilicity of polymers of intrinsic microporosity for pervaporation dehydration of ethylene glycol. Chen, M. M., Wu, X. M., Soyekwo, F., Zhang, Q. G., Lv, R. X., Zhu, A. M. & Liu, Q. L. Separation and Purification Technology 2017, 174, 166-173, doi:10.1016/j.seppur.2016.10.024.

[362]   Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. Cheng, Y. D., Wang, X. R., Jia, C. K., Wang, Y. X., Zhai, L. Z., Wang, Q. & Zhao, D. Journal of Membrane Science 2017, 539, 213-223, doi:10.1016/j.memsci.2017.06.011.

[363]   Porous Organic Materials: Strategic Design and Structure-Function Correlation. Das, S., Heasman, P., Ben, T. & Qiu, S. L. Chemical Reviews 2017, 117, 1515-1563, doi:10.1021/acs.chemrev.6b00439.

[364]   Microporous polymeric membranes inspired by adsorbent for gas separation. Dong, G. X. & Lee, Y. M. Journal of Materials Chemistry A 2017, 5, 13294-13319, doi:10.1039/c7ta04015f.

[365]   Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries. Doris, S. E., Ward, A. L., Baskin, A., Frischmann, P. D., Gavvalapalli, N., Chenard, E., Sevov, C. S., Prendergast, D., Moore, J. S. & Helms, B. A. Angewandte Chemie-International Edition 2017, 56, 1595-1599, doi:10.1002/anie.201610582.

[366]   Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation. Fuoco, A., Khdhayyer, M. R., Attfield, M. P., Esposito, E., Jansen, J. C. & Budd, P. M. Membranes 2017, 7, doi:10.3390/membranes7010007.

[367]   50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Galizia, M., Chi, W. S., Smith, Z. P., Merkel, T. C., Baker, R. W. & Freeman, B. D. Macromolecules 2017, 50, 7809-7843, doi:10.1021/acs.macromol.7b01718.

[368]   High-flux PIM-1/PVDF thin film composite membranes for 1-butanol/water pervaporation. Gao, L., Alberto, M., Gorgojo, P., Szekely, G. & Budd, P. M. Journal of Membrane Science 2017, 529, 207-214, doi:10.1016/j.memsci.2017.02.008.

[369]   Improved gas selectivity of polyetherimide membrane by the incorporation of PIM polyimide phase. Garcia, M. G., Marchese, J. & Ochoa, N. A. Journal of Applied Polymer Science 2017, 134, doi:10.1002/app.44682.

[370]   Mixed gas sorption in glassy polymeric membranes. III. CO2/CH4 mixtures in a polymer of intrinsic microporosity (PIM-1): Effect of temperature. Gemeda, A. E., De Angelis, M. G., Du, N. Y., Li, N. W., Guiver, M. D. & Sarti, G. C. Journal of Membrane Science 2017, 524, 746-757, doi:10.1016/j.memsci.2016.11.053.

[371]   Surface functionalization of high free-volume polymers as a route to efficient hydrogen separation membranes. Ghalei, B., Kinoshita, Y., Wakimoto, K., Sakurai, K., Mathew, S., Yue, Y. F., Kusuda, H., Imahori, H. & Sivaniah, E. Journal of Materials Chemistry A 2017, 5, 4686-4694, doi:10.1039/c6ta09181d.

[372]   Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Ghalei, B., Sakurai, K., Kinoshita, Y., Wakimoto, K., Isfahani, A. P., Song, Q. L., Doitomi, K., Furukawa, S., Hirao, H., Kusuda, H., Kitagawa, S. & Sivaniah, E. Nature Energy 2017, 2, doi:10.1038/nenergy.2017.86.

[373]   Effect of pristine and functionalized single- and multi-walled carbon nanotubes on CO2 separation ofmixedmatrixmembranes based on polymers of intrinsic microporosity (PIM-1): a molecular dynamics simulation study. Golzar, K., Modarress, H. & Amjad-Iranagh, S. Journal of Molecular Modeling 2017, 23, doi:10.1007/s00894-017-3436-3.

[374]   Ethanolamine Purification by Nanofiltration through PIM-1 and Carbon Membranes: A Molecular Simulation Study. Gupta, K. M., Shi, Q., Sarkisov, L. & Jiang, J. W. Journal of Physical Chemistry C 2017, 121, 20539-20545, doi:10.1021/acs.jpcc.7b07043.

[375]   Blend membranes of ionic liquid and polymers of intrinsic microporosity with improved gas separation characteristics. Halder, K., Khan, M. M., Grnauer, J., Shishatskiy, S., Abetz, C., Filiz, V. & Abetz, V. Journal of Membrane Science 2017, 539, 368-382, doi:10.1016/j.memsci.2017.06.022.

[376]   A Cationic Diode Based on Asymmetric Nafion Film Deposits. He, D. P., Madrid, E., Aaronson, B. D. B., Fan, L., Doughty, J., Mathwig, K., Bond, A. M., McKeown, N. B. & Marken, F. Acs Applied Materials & Interfaces 2017, 9, 11272-11278, doi:10.1021/acsami.7b01774.

[377]   Redox reactivity at silver microparticle-glassy carbon contacts under a coating of polymer of intrinsic microporosity (PIM). He, D. P., Rauwel, E., Malpass-Evans, R., Carta, M., McKeown, N. B., Gorle, D. B., Kulandainathan, M. A. & Marken, F. Journal of Solid State Electrochemistry 2017, 21, 2141-2146, doi:10.1007/s10008-017-3534-2.

[378]   Carbonization of polymers of intrinsic microporosity to microporous heterocarbon: Capacitive pH measurements. Hernandez, N., Iniesta, J., Leguey, V. M., Armstrong, R., Taylor, S. H., Madrid, E., Rong, Y., Castaing, R., Malpass-Evans, R., Carta, M., McKeown, N. B. & Marken, F. Applied Materials Today 2017, 9, 136-144, doi:https://doi.org/10.1016/j.apmt.2017.06.003.

[379]   Rigid-to-Flexible Conformational Transformation: An Efficient Route to Ring-Opening of a Troger’s Base-Containing Ladder Polymer. Ishiwari, F., Takeuchi, N., Sato, T., Yamazaki, H., Osuga, R., Kondo, J. N. & Fukushima, T. Acs Macro Letters 2017, 6, 775-780, doi:10.1021/acsmacrolett.7b00385.

[380]   Highly Carboxylate-Functionalized Polymers of Intrinsic Microporosity for CO2-Selective Polymer Membranes. Jeon, J. W., Kim, D. G., Sohn, E. H., Yoo, Y., Kim, Y. S., Kim, B. G. & Lee, J. C. Macromolecules 2017, 50, 8019-8027, doi:10.1021/acs.macromol.7b01332.

[381]   Defect-free PIM-1 hollow fiber membranes. Jue, M. L., Breedveld, V. & Lively, R. P. Journal of Membrane Science 2017, 530, 33-41, doi:10.1016/j.memsci.2017.02.012.

[382]   Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1. Khdhayyer, M. R., Esposito, E., Fuoco, A., Monteleone, M., Giorno, L., Jansen, J. C., Attfield, M. P. & Budd, P. M. Separation and Purification Technology 2017, 173, 304-313, doi:10.1016/j.seppur.2016.09.036.

[383]   d Enhanced PIM-1 membrane gas separation selectivity through efficient dispersion of functionalized POSS fillers. Kinoshita, Y., Wakimoto, K., Gibbons, A. H., Isfahani, A. P., Kusuda, H., Sivaniah, E. & Ghalei, B. Journal of Membrane Science 2017, 539, 178-186, doi:10.1016/j.memsci.2017.05.072.

[384]   Molecular mobility and gas transport properties of nanocomposites based on PIM-1 and polyhedral oligomeric phenethyl-silsesquioxanes (POSS). Konnertz, N., Ding, Y., Harrison, W. J., Budd, P. M., Schonhals, A. & Bohning, M. Journal of Membrane Science 2017, 529, 274-285, doi:10.1016/j.memsci.2017.02.007.

[385]   NLDFT Pore Size Distribution in Amorphous Microporous Materials. Kupgan, G., Liyana-Arachchi, T. P. & Colina, C. M. Langmuir 2017, 33, 11138-11145, doi:10.1021/acs.langmuir.7b01961.

[386]   Norbornyl Benzocyclobutene Ladder Polymers: Conformation and Microporosity. Lai, H. W. H., Liu, S. & Xia, Y. Journal of Polymer Science Part a-Polymer Chemistry 2017, 55, 3075-3081, doi:10.1002/pola.28640.

[387]   Functionalized Rigid Ladder Polymers from Catalytic Arene-Norbornene Annulation Polymerization. Lai, H. W. H., Teo, Y. C. & Xia, Y. Acs Macro Letters 2017, 6, 1357-1361, doi:10.1021/acsmacrolett.7b00806.

[388]   Intrinsically Hierarchical Nanoporous Polymers via Polymerization-Induced Microphase Separation. Larsen, M. B., Van Horn, J. D., Wu, F. & Hillmyer, M. A. Macromolecules 2017, 50, 4363-4371, doi:10.1021/acs.macromol.7b00808.

[389]   Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification. Liao, K. S., Japip, S., Lai, J. Y. & Chung, T. S. Journal of Membrane Science 2017, 534, 92-99, doi:10.1016/j.memsci.2017.04.017.

[390]   Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin. Liu, J., Xiao, Y., Liao, K.-S. & Chung, T.-S. Journal of Membrane Science 2017, 523, 92-102.

[391]   Flexible thermally treated 3D PIM-CD molecular sieve membranes exceeding the upper bound line for propylene/propane separation. Liu, J. T., Xiao, Y. C. & Chung, T. S. Journal of Materials Chemistry A 2017, 5, 4583-4595, doi:10.1039/c6ta09751k.

[392]   Facile Synthesis of a Hydroxyl-Functionalized Tröger’s Base Diamine: A New Building Block for High-Performance Polyimide Gas Separation Membranes. Ma, X., Abdulhamid, M., Miao, X. & Pinnau, I. Macromolecules 2017, 50, 9569-9576, doi:10.1021/acs.macromol.7b02301.

[393]   Design and Synthesis of Polyimides Based on Carbocyclic Pseudo-Troger’s Base-Derived Dianhydrides for Membrane Gas Separation Applications. Ma, X. H., Abdulhamid, M. A. & Pinnau, I. Macromolecules 2017, 50, 5850-5857, doi:10.1021/acs.macromol.7b01054.

[394]   Ionic Transport in Microhole Fluidic Diodes Based on Asymmetric Ionomer Film Deposits. Mathwig, K., Aaronson, B. D. B. & Marken, F. ChemElectroChem 2017, Ahead of Print, doi:10.1002/celc.201700464.

[395]   The synthesis of polymers of intrinsic microporosity (PIMs). McKeown, N. B. Science China-Chemistry 2017, 60, 1023-1032, doi:10.1007/s11426-017-9058-x.

[396]   On the interpretation of cryogenic sorption isotherms in glassy polymers. Minelli, M., Paul, D. R. & Sarti, G. C. Journal of Membrane Science 2017, 540, 229-242, doi:10.1016/j.memsci.2017.06.053.

[397]   Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host. Morris, C. G., Jacques, N. M., Godfrey, H. G. W., Mitra, T., Fritsch, D., Lu, Z. Z., Murray, C. A., Potter, J., Cobb, T. M., Yuan, F. J., Tang, C. C., Yang, S. & Schroder, M. Chemical Science 2017, 8, 3239-3248, doi:10.1039/c6sc04343g.

[398]   Mixed-Penetrant Sorption in Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1. Ogieglo, W., Furchner, A., Ghanem, B., Ma, X. H., Pinnau, I. & Wessling, M. Journal of Physical Chemistry B 2017, 121, 10190-10197, doi:10.1021/acs.jpcb.7b10061.

[399]   How Do Organic Vapors Swell Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1? Ogieglo, W., Rahimi, K., Rauer, S. B., Ghanem, B., Ma, X. H., Pinnau, I. & Wessling, M. Journal of Physical Chemistry B 2017, 121, 7210-7220, doi:10.1021/acs.jpcb.7b03891.

[400]   A Highly Soluble, Fully Aromatic Fluorinated 3D Nanostructured Ladder Polymer. Olvera, L. I., Rodriguez-Molina, M., Ruiz-Trevino, F. A., Zolotukhin, M. G., Fomine, S., Cardenas, J., Gavino, R., Alexandrova, L., Toscana, R. A. & Martinez-Mercado, E. Macromolecules 2017, 50, 8480-8486, doi:10.1021/acs.macromol.7b01413.

[401]   Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications. Polak-Krasna, K., Dawson, R., Holyfield, L. T., Bowen, C. R., Burrows, A. D. & Mays, T. J. Journal of Materials Science 2017, 52, 3862-3875, doi:10.1007/s10853-016-0647-4.

[402]   AFM imaging and nanoindentation of polymer of intrinsic microporosity PIM-1. Polak-Krasna, K., Fuhrhop, C., Rochat, S., Burrows, A. D., Georgiadis, A., Bowen, C. R. & Mays, T. J. International Journal of Hydrogen Energy 2017, 42, 23915-23919, doi:10.1016/j.ijhydene.2017.04.081.

[403]   Ionic Diode Characteristics at a Polymer of Intrinsic Microporosity (PIM) | Nafion “Heterojunction” Deposit on a Microhole Poly(ethylene-terephthalate) Substrate. Putra, B. R., Aaronson, B. D. B., Madrid, E., Mathwig, K., Carta, M., Malpass-Evans, R., McKeown, N. B. & Marken, F. Electroanalysis 2017, 29, 2217-2223, doi:10.1002/elan.201700247.

[404]   Potassium cation induced ionic diode blocking for a polymer of intrinsic microporosity | nafion “heterojunction” on a microhole substrate. Riza Putra, B., Carta, M., Malpass-Evans, R., McKeown, N. B. & Marken, F. Electrochimica Acta 2017, 258, 807-813, doi:10.1016/j.electacta.2017.11.130.

[405]   Analysis of the transport properties of thermally rearranged (TR) polymers and polymers of intrinsic microporosity (PIM) relative to upper bound performance. Robeson, L. M., Dose, M. E., Freeman, B. D. & Paul, D. R. Journal of Membrane Science 2017, 525, 18-24, doi:10.1016/j.memsci.2016.11.085.

[406]   Hydrogen storage in polymer-based processable microporous composites. Rochat, S., Polak-Krasna, K., Tian, M., Holyfield, L. T., Mays, T. J., Bowen, C. R. & Burrows, A. D. Journal of Materials Chemistry A 2017, 5, 18752-18761, doi:10.1039/c7ta05232d.

[407]   High-Utilisation Nanoplatinum Catalyst (Pt@ cPIM) Obtained via Vacuum Carbonisation in a Molecularly Rigid Polymer of Intrinsic Microporosity. Rong, Y., He, D., Malpass-Evans, R., Carta, M., McKeown, N. B., Gromboni, M. F., Mascaro, L. H., Nelson, G. W., Foord, J. S. & Holdway, P. Electrocatalysis 2017, 1-12.

[408]   Polymer ultrapermeability from the inefficient packing of 2D chains. Rose, I., Bezzu, C. G., Carta, M., Comesana-Gandara, B., Lasseuguette, E., Ferrari, M. C., Bernardo, P., Clarizia, G., Fuoco, A., Jansen, J. C., Hart, K. E., Liyana-Arachchi, T. P., Colina, C. M. & McKeown, N. B. Nature Materials 2017, 16, 932-+, doi:10.1038/Nmat4939.

[409]   Carbon molecular sieve membrane from a microporous spirobisindane-based polyimide precursor with enhanced ethylene/ethane mixed-gas selectivity. Salinas, O., Ma, X. H., Wang, Y. G., Han, Y. & Pinnau, I. Rsc Advances 2017, 7, 3265-3272, doi:10.1039/c6ra24699k.

[410]   A Critical Update on the Synthesis of Carboxylated Polymers of Intrinsic Microporosity (C-PIMs). Santoso, B., Yanaranop, P., Kang, H., Leung, I. K. H. & Jin, J. Macromolecules 2017, 50, 3043-3050, doi:10.1021/acs.macromol.7b00344.

[411]   Selective dye adsorption by chemically-modified and thermally-treated polymers of intrinsic microporosity. Satilmis, B. & Budd, P. M. Journal of Colloid and Interface Science 2017, 492, 81-91, doi:10.1016/j.jcis.2016.12.048.

[412]   Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water. Satilmis, B., Budd, P. M. & Uyar, T. Reactive and Functional Polymers 2017, 121, 67-75, doi:10.1016/j.reactfunctpolym.2017.10.019.

[413]   Understanding the origins of metal-organic framework/polymer compatibility. Semino, R., Moreton, J. C., Ramsahye, N. A., Cohen, S. M. & Maurin, G. Chemical Science 2017, Ahead of Print, doi:10.1039/c7sc04152g.

[114]   Role of MOF surface defects on the microscopic structure of MOF/polymer interfaces: A computational study of the ZIF-8/PIMs systems. Semino, R., Ramsahye, N. A., Ghoufi, A. & Maurin, G. Microporous and Mesoporous Materials 2017, 254, 184-191, doi:10.1016/j.micromeso.2017.02.031.

[415]   Adsorption of Methyl Orange from Aqueous Solution by Polymer of Intrinsic Microporosity: Isotherms and Kinetics Study. Shakeel, M., Mehmood, K., Waseem, M., Rehman, W., Shah, K. H. & Nawaz, M. Journal of the Chemical Society of Pakistan 2017, 39, 337-342.

[416]   Carbon Nanofiber Paper Electrodes Based on Heterocyclic Polymers for High Temperature Polymer Electrolyte Membrane Fuel Cell. Skupov, K. M., Ponomarev, I. I., Razorenov, D. Y., Zhigalina, V. G., Zhigalina, O. M., Ponomarev, I. I., Volkova, Y. A., Volfkovich, Y. M. & Sosenkin, V. E. Macromolecular Symposia 2017, 375, doi:10.1002/masy.201600188.

[417]   Catalytic Oxidation of Thiols within Cavities of Phthalocyanine Network Polymers. Tamura, R., Kawata, T., Hattori, Y., Kobayashi, N. & Kimura, M. Macromolecules 2017, 50, 7978-7983, doi:10.1021/acs.macromol.7b01713.

[418]   A strategy for preparing spirobichroman dianhydride from bisphenol A and its resulting polyimide with low dielectric characteristic. Tang, I. C., Wang, M. W., Wu, C. H., Dai, S. A., Jeng, R. J. & Lin, C. H. Rsc Advances 2017, 7, 1101-1109.

[419]   Synthesis of Ladder Polymers: Developments, Challenges, and Opportunities. Teo, Y. C., Lai, H. W. H. & Xia, Y. Chemistry-a European Journal 2017, 23, 14101-14112, doi:10.1002/chem.201702219.

[420]   Physical aging, CO2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1). Tiwari, R. R., Jin, J. Y., Freeman, B. D. & Paul, D. R. Journal of Membrane Science 2017, 537, 362-371, doi:10.1016/j.memsci.2017.04.069.

[421]   Synthesis of fluorinated poly(arylene ether)s with dibenzodioxin and spirobisindane units from new bis(pentafluoropheny1)- and bis(nonafluorobiphenyl)-containing monomers. Tkachenko, I. M., Belov, N. A., Kobzar, Y. L., Dorokhin, A. V., Shekera, O. V., Shantarovich, V. P., Bekeshev, V. G. & Shevchenko, V. V. Journal of Fluorine Chemistry 2017, 195, 1-12, doi:10.1016/j.jfluchem.2017.01.008.

[422]   Soluble Polymers with Intrinsic Porosity for Flue Gas Purification and Natural Gas Upgrading. Wang, X. B., Liu, Y., Ma, X. H., Das, S. K., Ostwal, M., Gadwal, I., Yao, K. X., Dong, X. L., Han, Y., Pinnau, I., Huang, K. W. & Lai, Z. P. Advanced Materials 2017, 29, doi:10.1002/adma.201605826.

[423]   Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. Wang, Z. G., Ren, H. T., Zhang, S. X., Zhang, F. & Jin, J. Journal of Materials Chemistry A 2017, 5, 10968-10977, doi:10.1039/c7ta01773a.

[424]   Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium-Sulfur Batteries. Ward, A. L., Doris, S. E., Li, L. J., Hughes, M. A., Qu, X. H., Persson, K. A. & Helms, B. A. Acs Central Science 2017, 3, 399-406, doi:10.1021/acscentsci.7b00012.

[425]   The Use of Iptycenes in Rational Macromolecular Design for Gas Separation Membrane Applications. Weidman, J. R. & Guo, R. L. Industrial & Engineering Chemistry Research 2017, 56, 4220-4236, doi:10.1021/acs.iecr.7b00540.

[426]   Analysis of governing factors controlling gas transport through fresh and aged triptycene-based polyimide films. Weidman, J. R., Luo, S. J., Doherty, C. M., Hill, A. J., Gao, P. Y. & Guo, R. L. Journal of Membrane Science 2017, 522, 12-22, doi:10.1016/j.memsci.2016.09.013.

[427]   Structure Manipulation in Triptycene-Based Polyimides through Main Chain Geometry Variation and Its Effect on Gas Transport Properties. Weidman, J. R., Luo, S. J., Zhang, Q. N. & Guo, R. L. Industrial & Engineering Chemistry Research 2017, 56, 1868-1879, doi:10.1021/acs.iecr.6b04946.

[428]   Highly microporous free-radically generated polymeric materials using a novel contorted monomer. Wendland, M. S. Polymer 2017, 126, 330-337, doi:10.1016/j.polymer.2017.05.022.

[429]   Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. Wu, X. Y., Tian, Z. Z., Wang, S. F., Peng, D. D., Yang, L. X., Wu, Y. Z., Xin, Q. P., Wu, H. & Jiang, Z. Y. Journal of Membrane Science 2017, 528, 273-283, doi:10.1016/j.memsci.2017.01.042.

[430]   Molecular design of Tröger’s base-based polymers with intrinsic microporosity for gas separation. Xiao, Y., Zhang, L., Xu, L. & Chung, T.-S. Journal of Membrane Science 2017, 521, 65-72.

[431]   Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane. Yang, L. X., Tian, Z. Z., Zhang, X. Y., Wu, X. Y., Wu, Y. Z., Wang, Y. N., Peng, D. D., Wang, S. F., Wu, H. & Jiang, Z. Y. Journal of Membrane Science 2017, 543, 69-78, doi:10.1016/j.memsci.2017.08.050.

[432]   Microporous polymers Ultrapermeable membranes. Yin, Y. & Guiver, M. D. Nature Materials 2017, 16, 880-881, doi:10.1038/nmat4961.

[433]   Mechanically Strong and Flexible Hydrolyzed Polymers of Intrinsic Microporosity (PIM-1) Membranes. Yong, W. F. & Chung, T. S. Journal of Polymer Science Part B-Polymer Physics 2017, 55, 344-354, doi:10.1002/polb.24279.

[434]   Effects of hydrolyzed PIM-1 in polyimide-based membranes on C2-C4 alcohols dehydration via pervaporationle. Yong, W. F., Salehian, P., Zhang, L. L. & Chung, T. S. Journal of Membrane Science 2017, 523, 430-438, doi:10.1016/j.memsci.2016.10.021.

[435]   Phthalazinone-based copolymers with intrinsic microporosity (PHPIMs) and their separation performance. Yuan, K. Y., Liu, C., Zhang, S. H., Jiang, L. M., Liu, C. D., Yu, G. P., Wang, J. Y. & Jian, X. G. Journal of Membrane Science 2017, 541, 403-412, doi:10.1016/j.memsci.2017.07.021.

[436]   Electrospun nanofibrous membrane of porous fluorine-containing triptycene-based polyimides for oil/water separation. Zhai, T.-L., Du, Q., Xu, S., Wang, Y. & Zhang, C. Rsc Advances 2017, 7, 22548-22552, doi:10.1039/C7RA01614J.

[437]   Effects of the side groups of the spirobichroman-based diamines on the chain packing and gas separation properties of the polyimides. Zhang, C. L., Li, P. & Cao, B. Journal of Membrane Science 2017, 530, 176-184, doi:10.1016/j.memsci.2017.02.030.

[438]   Molecular Design of Troger’s Base-Based Polymers Containing Spirobichroman Structure for Gas Separation. Zhang, C. L., Yan, J., Tian, Z. K., Liu, X. B., Cao, B. & Li, P. Industrial & Engineering Chemistry Research 2017, 56, 12783-12788, doi:10.1021/acs.iecr.7b03434.

[439]   Evaluation of free volume and anisotropic chain orientation of Troger’s base (TB)-based microporous polyimide/copolyimide membranes. Zhuang, Y. B. & Ando, S. Polymer 2017, 123, 39-48, doi:10.1016/j.polymer.2017.06.079.

[440]   Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity – the Boson peak of PIM-1. Zorn, R., Yin, H., Lohstroh, W., Harrison, W., Budd, P. M., Pauw, B. R., Boehning, M. & Schoenhals, A. Physical Chemistry Chemical Physics 2017, Ahead of Print, doi:10.1039/c7cp07141h.

[441]  A rapidly-reversible absorptive and emissive vapochromic Pt(II) pincer-based chemical sensor. Bryant, M. J., Skelton, J. M., Hatcher, L. E., Stubbs, C., Madrid, E., Pallipurath, A. R., Thomas, L. H., Woodall, C. H., Christensen, J., Fuertes, S., Robinson, T. P., Beavers, C. M., Teat, S. J., Warren, M. R., Pradaux-Caggiano, F., Walsh, A., Marken, F., Carbery, D. R., Parker, S. C., McKeown, N. B., Malpass-Evans, R., Carta, M. & Raithby, P. R. Nature Communications 2017, 8, doi:10.1038/s41467-017-01941-2.

[442]  Synthesis and characterization of novel Troger’s base containing polymers from commercial available diamines. Wu, Z. X. & Jin, J. Y. Macromolecular Research 2017, 25, 546-551, doi:10.1007/s13233-017-5131-8.

[443]  A Current Position of Polyacetylenes Among Other Highly Permeable Membrane Materials. Yampolskii, Y. Polymer Reviews 2017, 57, 200-212, doi:10.1080/15583724.2015.1127960.

[444]  Engineering microporous organic framework membranes for CO2 separations. Yu, G. L., Rong, H. Z., Zou, X. Q. & Zhu, G. S. Molecular Systems Design & Engineering 2017, 2, 182-190, doi:10.1039/c7me00017k.

[445]  Microporous Polyamide Membranes for Molecular Sieving of Nitrogen from Volatile Organic Compounds. Zhou, H. L., Tao, F., Liu, Q., Zong, C. X., Yang, W. C., Cao, X. Z., Jin, W. Q. & Xu, N. P. Angewandte Chemie-International Edition 2017, 56, 5755-5759, doi:10.1002/anie.201700176.

[446]  Evaluation of free volume and anisotropic chain orientation of Troger’s base (TB)-based microporous polyimide/copolyimide membranes. Zhuang, Y. B. & Ando, S. Polymer 2017, 123, 39-48, doi:10.1016/j.polymer.2017.06.079.

Advertisements