2016

[260] Synthesis of perfectly alternating copolymers for polymers of intrinsic microporosity, J. Zhang, J. Jin, R. Cooney, Q. Fu, G. G. Qiao, S. Thomas, T. C. Merkel, Polymer Chemistry 2015, 6, 5003-5008, 10.1039/c5py00570a.

[261] Fluoride-mediated polycondensation for the synthesis of polymers of intrinsic microporosity, J. Zhang, J. Jin, R. Cooney, S. Zhang, Polymer 2015, 76, 168-172, 10.1016/j.polymer.2015.08.066.

[262] Synthesis of polymers of intrinsic microporosity using an AB-type monomer, J. Zhang, J. Jin, R. Cooney, S. Zhang, Polymer 2015, 57, 45-50, 10.1016/j.polymer.2014.12.010.

[263] Advancing polymers of intrinsic microporosity by mechanochemistry, P. Zhang, X. Jiang, S. Wan, S. Dai, Journal of Materials Chemistry A 2015, 3, 6739-6741, 10.1039/c4ta07196d.

[264] Polymer of Intrinsic Microporosity Induces Host-Guest Substrate Selectivity in Heterogeneous 4-Benzoyloxy-TEMPO-Catalysed Alcohol Oxidations, S. D. Ahn, A. Kolodziej, R. Malpass-Evans, M. Carta, N. B. McKeown, S. D. Bull, A. Buchard, F. Marken, Electrocatalysis 2016, 7, 70-78, 10.1007/s12678-015-0284-8.

[265] Pure- and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation, N. Alaslai, B. Ghanem, F. Alghunaimi, E. Litwiller, I. Pinnau, Journal of Membrane Science 2016, 505, 100-107, 10.1016/j.memsci.2015.12.053.

[266] High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation, N. Alaslai, B. Ghanem, F. Alghunaimi, I. Pinnau, Polymer 2016, 91, 128-135, 10.1016/j.polymer.2016.03.063.

[267] Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers, M. Alberto, J. M. Luque-Alled, L. Gao, M. Iliut, E. Prestat, L. Newman, S. J. Haigh, A. Vijayaraghavan, P. M. Budd, P. Gorgojo, Journal of Membrane Science 2016, 10.1016/j.memsci.2016.07.058.

[268] Triptycene dimethyl-bridgehead dianhydride-based intrinsically microporous hydroxyl-functionalized polyimide for natural gas upgrading, F. Alghunaimi, B. Ghanem, N. Alaslai, M. Mukaddam, I. Pinnau, Journal of Membrane Science 2016, 520, 240-246, 10.1016/j.memsci.2016.07.058.

[269] The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1, K. Althumayri, W. J. Harrison, Y. Y. Shin, J. M. Gardiner, C. Casiraghi, P. M. Budd, P. Bernardo, G. Clarizia, J. C. Jansen, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 2016, 374, 10.1098/rsta.2015.0031.

[270] Light-switchable polymers of intrinsic microporosity, D. Becker, N. Konnertz, M. Böhning, J. Schmidt, A. Thomas, Chemistry of Materials 2016, 28, 8523-8529, 10.1021/acs.chemmater.6b02619.

[271] Toward an Understanding of the Microstructure and Interfacial Properties of PIMs/ZIF-8 Mixed Matrix Membranes, M. Benzaqui, R. Semino, N. Menguy, F. Carn, T. Kundu, J.-M. Guigner, N. B. McKeown, K. J. Msayib, M. Carta, R. Malpass-Evans, ACS Applied Materials & Interfaces 2016, 8, 27311-27321, 10.1021/acsami.6b08954.

[272] Mixed Matrix Membranes Based on PIMs for Gas Permeation: Principles, Synthesis, and Current Status, R. Castro-Muñoz, V. Fíla, C. T. Dung, Chemical Engineering Communications 2016, 10.1080/00986445.2016.1273832.

[273] Ultra‐High Proton/Vanadium Selectivity for Hydrophobic Polymer Membranes with Intrinsic Nanopores for Redox Flow Battery, I. S. Chae, T. Luo, G. H. Moon, W. Ogieglo, Y. S. Kang, M. Wessling, Advanced Energy Materials 2016, 6, 10.1002/aenm.201600517.

[274] Evaluation of a passive optical based end of service life indicator (ESLI) for organic vapor respirator cartridges, M. Checky, K. Frankel, D. Goddard, E. Johnson, J. C. Thomas, M. Zelinsky, C. Javner, Journal of Occupational and Environmental Hygiene 2016, 13, 112-120, 10.1080/15459624.2015.1091956.

[275] Structural characteristics and transport behavior of triptycene-based PIMs membranes: A combination study using ab initio calculation and molecular simulations, Y. R. Chen, L. H. Chen, K. S. Chang, T. H. Chen, Y. F. Lin, K. L. Tung, Journal of Membrane Science 2016, 514, 114-124, 10.1016/j.memsci.2016.04.063.

[276] Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes, E. Chernova, D. Petukhov, O. Boytsova, A. Alentiev, P. Budd, Y. Yampolskii, A. Eliseev, Scientific Reports 2016, 6, No. 31183, 10.1038/srep31183.

[277] Porous Organic Materials: Strategic Design and Structure–Function Correlation, S. Das, P. Heasman, T. Ben, S. Qiu, Chemical Reviews 2016, 10.1021/acs.chemrev.6b00439.

[278] Understanding and controlling the chemical evolution and polysulfide-blocking ability of lithium–sulfur battery membranes cast from polymers of intrinsic microporosity, S. E. Doris, A. L. Ward, P. D. Frischmann, L. Li, B. A. Helms, Journal of Materials Chemistry A 2016, 4, 16946-16952, 10.1039/C6TA06401A

[279] Integration of multi-stage membrane carbon capture processes to coal-fired power plants using highly permeable polymers, M. C. Ferrari, D. Bocciardo, S. Brandani, Green Energy & Environment 2016, doi.org/10.1016/j.gee.2016.1010.1001,

[280] Improved gas selectivity of polyetherimide membrane by the incorporation of PIM polyimide phase, M. G. García, J. Marchese, N. A. Ochoa, Journal of Applied Polymer Science 2016, 10.1002/app.44682.

[281] Mixed gas sorption in glassy polymeric membranes. III. CO 2/CH 4 mixtures in a polymer of intrinsic microporosity (PIM-1): effect of temperature, A. E. Gemeda, M. G. De Angelis, N. Du, N. Li, M. D. Guiver, G. C. Sarti, Journal of Membrane Science 2016, 10.1016/j.memsci.2016.11.053.

[282] Novel 6FDA-based polyimides derived from sterically hindered Troger’s base diamines: Synthesis and gas permeation properties, B. Ghanem, N. Alaslai, X. H. Miao, I. Pinnau, Polymer 2016, 96, 13-19, 10.1016/j.polymer.2016.04.068.

[283] New phenazine-containing ladder polymer of intrinsic microporosity from a spirobisindane-based AB-type monomer, B. Ghanem, F. Alghunaimi, N. Alaslai, X. Ma, I. Pinnau, RSC Advances 2016, 6, 79625-79630, 10.1039/C6RA16393A.

[284] Synthesis and characterization of novel triptycene dianhydrides and polyimides of intrinsic microporosity based on 3, 3ʹ-dimethylnaphthidine, B. Ghanem, F. Alghunaimi, X. Ma, N. Alaslai, I. Pinnau, Polymer 2016, 101, 225-232, 10.1016/j.polymer.2016.08.075.

[285] Interplay of inlet temperature and humidity on energy penalty for CO 2 post-combustion capture: Rigorous analysis and simulation of a single stage gas permeation process, L. Giordano, D. Roizard, R. Bounaceur, E. Favre, Energy 2016, 116, 517-525,

[286] Molecularly Rigid Microporous Polyamine Captures and Stabilizes Conducting Platinum Nanoparticle Networks, D. He, D. S. He, J. Yang, Z.-X. Low, R. Malpass-Evans, M. Carta, N. B. McKeown, F. Marken, ACS applied materials & interfaces 2016, 8, 22425-22430, 10.1021/acsami.6b04144.

[287] Fuel cell anode catalyst performance can be stabilized with a molecularly rigid film of polymers of intrinsic microporosity (PIM), D. P. He, Y. Y. Rong, M. Carta, R. Malpass-Evans, N. B. McKeown, F. Marken, Rsc Advances 2016, 6, 9315-9319, 10.1039/c5ra25320a.

[288] R. E. Hefner, B. L. Cramm, Dow Global Technologies LLC, USA . 2016, p. 34pp.

[289] R. E. Hefner, B. L. Cramm, I. A. Tomlinson, L. M. Huffman, A. Roy, Dow Global Technologies LLC, USA . 2016, p. 36pp.

[290] B. A. Helms, C. Li, A. Ward, S. E. Doris, P. D. Frischmann, University of California, USA . 2016, p. 112pp.

[291] An anion-conductive microporous membrane composed of a rigid ladder polymer with a spirobiindane backbone, F. Ishiwari, T. Sato, H. Yamazaki, J. N. Kondo, S. Miyanishi, T. Yamaguchi, T. Fukushima, Journal of Materials Chemistry A 2016, 4, 17655-17659, 10.1039/C6TA07576B

[292] Polymer nanofilms with enhanced microporosity by interfacial polymerization, M. F. Jimenez-Solomon, Q. L. Song, K. E. Jelfs, M. Munoz-Ibanez, A. G. Livingston, Nature Materials 2016, 15, 760-+, 10.1038/nmat4638.

[293] M. Kang, B. Hao, B. K. Nelson, 3M Innovative Properties Company, USA . 2016, p. No pp. given.

[294] A Carbonaceous Membrane based on a Polymer of Intrinsic Microporosity (PIM-1) for Water Treatment, H. J. Kim, D.-G. Kim, K. Lee, Y. Baek, Y. Yoo, Y. S. Kim, B. G. Kim, J.-C. Lee, Scientific Reports 2016, 6, 10.1038/srep36078.

[295] Molecular Mobility of the High Performance Membrane Polymer PIM-1 as Investigated by Dielectric Spectroscopy, N. Konnertz, Y. Ding, W. J. Harrison, P. M. Budd, A. Schonhals, M. Bohning, Acs Macro Letters 2016, 5, 528-532, 10.1021/acsmacrolett.6b00209.

[296] Effect of physical aging on the gas transport and sorption in PIM-1 membranes, M. Lanč, K. Pilnáček, O. Vopička, K. Friess, P. Bernardo, F. Bazzarelli, F. Tasselli, G. Clarizia, C. Mason, L. Maynard-Atem, Polymer 2016, 10.1016/j.polymer.2016.10.040.

[297] M. Laskoski, K. P. Sullivan, H. L. Ricks-Laskoski, C. L. Hill, American Chemical Society, 2016, pp. NERM-21.

[298] Effect of humidity and flue gas impurities on CO2 permeation of a polymer of intrinsic microporosity for post-combustion capture, E. Lasseuguette, M. Carta, S. Brandani, M. C. Ferrari, International Journal of Greenhouse Gas Control 2016, 50, 93-99, 10.1016/j.ijggc.2016.04.023.

[299] Development of microporous electrospun PIM-1 fibres, E. Lasseuguette, M.-C. Ferrari, Materials Letters 2016, 177, 116-119, 10.1016/j.matlet.2016.04.181.

[300] Synthesis and characterization of polyethersulfone with intrinsic microporosity, K. Lee, J. W. Jeon, B. M. Maeng, K. M. Huh, J. C. Won, Y. Yoo, Y. S. Kim, B. G. Kim, RSC Advances 2016, 6, 70320-70325, 10.1039/C6RA13034H

[301] Enhancing the Gas Permeability of Troger’s Base Derived Polyimides of Intrinsic Microporosity, M. Lee, C. G. Bezzu, M. Carta, P. Bernardo, G. Clarizia, J. C. Jansen, N. B. McKeown, Macromolecules 2016, 49, 4147-4154, 10.1021/acs.macromol.6b00351.

[302] Metal ion modified PIM-1 and its application for propylene/propane separation, K. S. Liao, J. Y. Lai, T. S. Chung, Journal of Membrane Science 2016, 515, 36-44, 10.1016/j.memsci.2016.05.032.

[303] C. W. Liskey, M. B. Hamoy, C. Liu, 2016, pp. US Patent 9,238,202.

[304] High-Performance Polymers for Membrane CO2/N2 Separation, J. Liu, X. Hou, H. B. Park, H. Lin, Chemistry-a European Journal 2016, 22, 15980-15990, 10.1002/chem.201603002.

[305] Finely Tuning the Free Volume Architecture in Iptycene-Containing Polyimides for Highly Selective and Fast Hydrogen Transport, S. J. Luo, J. R. Wiegand, B. Kazanowska, C. M. Doherty, K. Konstas, A. J. Hill, R. L. Guo, Macromolecules 2016, 49, 3395-3405, 10.1021/acs.macromol.6b00485.

[306] Bifunctionalized Intrinsically Microporous Polyimides with Simultaneously Enhanced Gas Permeability and Selectivity, X. Ma, M. Mukaddam, I. Pinnau, Macromolecular rapid communications 2016, 37, 900-904, 10.1002/marc.201600023.

[307] A novel intrinsically microporous ladder polymer and copolymers derived from 1, 1′, 2, 2′-tetrahydroxy-tetraphenylethylene for membrane-based gas separation, X. Ma, I. Pinnau, Polymer Chemistry 2016, 7, 1244-1248, 10.1039/C5PY01796C

[308] Reagentless Electrochemiluminescence from a Nanoparticulate Polymer of Intrinsic Microporosity (PIM‐1) Immobilized onto Tin‐Doped Indium Oxide, E. Madrid, D. He, J. Yang, C. F. Hogan, B. Stringer, K. J. Msayib, N. B. McKeown, P. R. Raithby, F. Marken, ChemElectroChem 2016, 3, 2160-2164, 10.1002/celc.201600419.

[309] Contorted separation, N. B. McKeown, Nature Materials 2016, 15, 706-707, 10.1038/nmat4680.

[310] PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers, T. Mitra, R. S. Bhavsar, D. J. Adams, P. M. Budd, A. I. Cooper, Chem. Commun. 2016, 52, 5581-5584, 10.1039/c6cc00261g.

[311] How Much Do Ultrathin Polymers with Intrinsic Microporosity Swell in Liquids?, W. Ogieglo, B. Ghanem, X. Ma, I. Pinnau, M. Wessling, The Journal of Physical Chemistry B 2016, 120, 10403-10410, 10.1021/acs.jpcb.6b06807.

[312] Octafluorocyclopentene–A versatile tetrafunctional monomer for making tunable, high surface area, microporous ladder polymers, A. Parthiban, K. Ranganathan, Journal of Fluorine Chemistry 2016, 191, 70-76, 10.1016/j.jfluchem.2016.09.013.

[313] Aging of polymers of intrinsic microporosity tracked by methanol vapour permeation, K. Pilnáček, O. Vopička, M. Lanč, M. Dendisová, M. Zgažar, P. M. Budd, M. Carta, R. Malpass-Evans, N. B. McKeown, K. Friess, Journal of Membrane Science 2016, 520, 895-906, 10.1016/j.memsci.2016.08.054.

[314] Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications, K. Polak-Kraśna, R. Dawson, L. T. Holyfield, C. R. Bowen, A. D. Burrows, T. J. Mays, Journal of Materials Science 2016, 1-14, doi:10.1007/s10853-016-0647-4.

[315] Dimethyl sulfoxide as a green solvent for successful precipitative polyheterocyclization based on nucleophilic aromatic substitution, resulting in high molecular weight PIM-1, I. I. Ponomarev, I. V. Blagodatskikh, A. V. Muranov, Y. A. Volkova, D. Y. Razorenov, P. I. I., K. M. Skupov, Mendeleev Communications 2016, 26, 362–364, 10.1016/j.mencom.2016.07.033.

[316] Review of polymers of intrinsic microporosity for hydrogen storage applications, D. Ramimoghadam, E. M. Gray, C. Webb, International Journal of Hydrogen Energy 2016, 41, 16944-16965, 10.1016/j.ijhydene.2016.07.134.

[317] Analysis of the Transport Properties of Thermally Rearranged (TR) Polymers and Polymers of Intrinsic Microporosity (PIM) Relative to Upper Bound Performance, L. M. Robeson, M. E. Dose, B. D. Freeman, D. R. Paul, Journal of Membrane Science 2016, 525, 18-24, 10.1016/j.memsci.2016.11.085.

[318] Polymers of intrinsic microporosity in electrochemistry: Anion uptake and transport effects in thin film electrodes and in free-standing ionic diode membranes, Y. Rong, A. Kolodziej, E. Madrid, M. Carta, R. Malpass-Evans, N. B. McKeown, F. Marken, Journal of Electroanalytical Chemistry 2016, 779, 241-249, 10.1016/j.jelechem.2015.11.038.

[319] pH-induced reversal of ionic diode polarity in 300nm thin membranes based on a polymer of intrinsic microporosity, Y. Rong, Q. Song, K. Mathwig, E. Madrid, D. He, R. G. Niemann, P. J. Cameron, S. E. Dale, S. Bending, M. Carta, Electrochemistry Communications 2016, 69, 41-45, doi.org/10.1016/j.elecom.2016.05.019.

[320] Development of high performance carboxylated PIM-1/P84 blend membranes for pervaporation dehydration of isopropanol and CO 2/CH 4 separation, P. Salehian, W. F. Yong, T.-S. Chung, Journal of Membrane Science 2016, 518, 110-119, doi.org/10.1016/j.memsci.2016.06.027.

[321] High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide, O. Salinas, X. Ma, E. Litwiller, I. Pinnau, Journal of Membrane Science 2016, 500, 115-123, doi.org/10.1016/j.memsci.2015.11.013.

[322] Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1), O. Salinas, X. H. Ma, E. Litwiller, I. Pinnau, Journal of Membrane Science 2016, 504, 133-140, 10.1016/j.memsci.2015.12.052.

[323] High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide, O. Salinas, X. H. Ma, E. Litwiller, I. Pinnau, Journal of Membrane Science 2016, 500, 115-123, 10.1016/j.memsci.2015.11.013.

[324] Selective dye adsorption by chemically-modified and thermally-treated polymers of intrinsic microporosity, B. Satilmis, P. M. Budd, Journal of Colloid and Interface Science 2016, doi.org/10.1016/j.jcis.2016.12.048.

[325] Hydrocarbon solubility, permeability, and competitive sorption effects in polymer of intrinsic microporosity (PIM-1) membranes, C. A. Scholes, J. Y. Jin, G. W. Stevens, S. E. Kentish, Journal of Polymer Science Part B-Polymer Physics 2016, 54, 397-404, 10.1002/polb.23900.

[326] Separation of carbon dioxide from flue gas by mixed matrix membranes using dual phase microporous polymeric constituents, A. K. Sekizkardes, V. A. Kusuma, G. Dahe, E. A. Roth, L. J. Hill, A. Marti, M. Macala, S. R. Venna, D. Hopkinson, Chem. Commun. 2016, 52, 11768-11771, 10.1039/C6CC04811K.

[327] Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity, Y. Y. Shin, E. Prestat, K. G. Zhou, P. Gorgojo, K. Althumayri, W. Harrison, P. M. Budd, S. J. Haigh, C. Casiraghi, Carbon 2016, 102, 357-366, 10.1016/j.carbon.2016.02.037.

[328] Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes, Q. L. Song, S. Cao, R. H. Pritchard, H. Qiblawey, E. M. Terentjev, A. K. Cheetham, E. Sivaniah, Journal of Materials Chemistry A 2016, 4, 270-279, 10.1039/c5ta09060a.

[329] Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation, R. J. Swaidan, X. Ma, I. Pinnau, Journal of Membrane Science 2016, 520, 983-989, doi.org/10.1016/j.memsci.2016.08.057.

[330] The Synthesis of Organic Molecules of Intrinsic Microporosity Designed to Frustrate Efficient Molecular Packing, R. G. D. Taylor, C. G. Bezzu, M. Carta, K. J. Msayib, J. Walker, R. Short, B. M. Kariuki, N. B. McKeown, Chemistry-a European Journal 2016, 22, 2466-2472, 10.1002/chem.201504212.

[331] Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity, Z. Z. Tian, S. F. Wang, Y. T. Wang, X. R. Ma, K. T. Cao, D. D. Peng, X. Y. Wu, H. Wu, Z. Y. Jiang, Journal of Membrane Science 2016, 514, 15-24, 10.1016/j.memsci.2016.04.019.

[332] Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes, N. Tien-Binh, H. Vinh-Thang, X. Y. Chen, D. Rodrigue, S. Kaliaguine, Journal of Membrane Science 2016, 520, 941-950, doi.org/10.1016/j.memsci.2016.08.045.

[333] Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance, Z. G. Wang, D. Wang, S. X. Zhang, L. Hu, J. Jin, Advanced Materials 2016, 28, 3399-3405, 10.1002/adma.201504982.

[334] C. D. Wood, X. Mulet, C. H. Lau, M. R. Hill, Commonwealth Scientific and Industrial Research Organisation, Australia . 2016, p. 77pp.

[335] Pervaporation Purification of Ethylene Glycol Using the Highly Permeable PIM-1 Membrane, X. M. Wu, H. Guo, F. Soyekwo, Q. G. Zhang, C. X. Lin, Q. L. Liu, A. M. Zhu, Journal of Chemical and Engineering Data 2016, 61, 579-586, 10.1021/acs.jced.5b00731.

[336] Pervaporation removal of volatile organic compounds from aqueous solutions using the highly permeable PIM-1 membrane, X. M. Wu, Q. G. Zhang, F. Soyekwo, Q. L. Liu, A. M. Zhu, Aiche Journal 2016, 62, 842-851, 10.1002/aic.15077.

[337] Facile conversion of nitrile to amide on polymers of intrinsic microporosity (PIM-1), P. Yanaranop, B. Santoso, R. Etzion, J. Jin, Polymer 2016, 98, 244-251, doi.org/10.1016/j.polymer.2016.06.041.

[338] Highly Conductive Anion-Exchange Membranes from Microporous Troger_s Base Polymers, Z. Yang, R. Guo, R. Malpass-Evans, M. Carta, N. B. McKeown, M. D. Guiver, L. Wu, T. Xu, Angewandte Chemie-International Edition 2016, 55, 11499–11502 DOI: 10.1002/anie.201605916.

[339] Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation, W. F. Yong, Z. K. Lee, T. S. Chung, M. Weber, C. Staudt, C. Maletzko, ChemSusChem 2016, 9, 1953-1962, DOI: 10.1002/cssc.201600354.

[340] Selective adsorption and separation of organic dyes in aqueous solutions by hydrolyzed PIM-1 microfibers, C. Zhang, P. Li, W. Huang, B. Cao, Chemical Engineering Research and Design 2016, 109, 76-85, doi.org/10.1016/j.cherd.2016.01.006.

[341] Electrospun polymer of intrinsic microporosity fibers and their use in the adsorption of contaminants from a nonaqueous system, C. L. Zhang, P. Li, B. Cao, Journal of Applied Polymer Science 2016, 133, 10.1002/app.43475.

[342] Fabrication of Superhydrophobic-Superoleophilic Fabrics by an Etching and Dip-Coating Two-Step Method for Oil-Water Separation, C. L. Zhang, P. Li, B. Cao, Industrial & Engineering Chemistry Research 2016, 55, 5030-5035, 10.1021/acs.iecr.6b00206.

[343] The enhancement of chain rigidity and gas transport performance of polymers of intrinsic microporosity via intramolecular locking of the spiro-carbon, J. Zhang, H. Kang, J. Martin, S. H. Zhang, S. Thomas, T. C. Merkel, J. Y. Jin, Chem. Commun. 2016, 52, 6553-6556, 10.1039/c6cc02308h.

[344] High performance post-modified polymers of intrinsic microporosity (PIM-1) membranes based on multivalent metal ions for gas separation, H. Y. Zhao, Q. Xie, X. L. Ding, J. M. Chen, M. M. Hua, X. Y. Tan, Y. Z. Zhang, Journal of Membrane Science 2016, 514, 305-312, 10.1016/j.memsci.2016.05.013.

[345] High-strength, soluble polyimide membranes incorporating Troger’s Base for gas separation, Y. Zhuang, J. G. Seong, Y. S. Do, W. H. Lee, M. J. Lee, M. D. Guiver, Y. M. Lee, Journal of Membrane Science 2016, 504, 55-65, 10.1016/j.memsci.2015.12.057.

[346] Soluble, microporous, Troger’s Base copolyimides with tunable membrane performance for gas separation, Y. B. Zhuang, J. G. Seong, Y. S. Do, W. H. Lee, M. J. Lee, Z. Cui, A. E. Lozano, M. D. Guiver, Y. M. Lee, Chem. Commun. 2016, 52, 3817-3820, 10.1039/c5cc09783e.

 

Advertisements