1. PIM-1/MIL-101 Hybrid Composite Membrane Material: Transport Properties and Free Volume. A. Y. Alentiev; G. N. Bondarenko; Y. V. Kostina; V. P. Shantarovich; S. N. Klyamkin; V. P. Fedin; K. A. Kovalenko; Y. P. Yampolskii, Petroleum Chemistry 2014, 54 (7), 477-481, https://doi.org/10.1134/s0965544114070020.
  2. Nanoporous covalent organic polymers incorporating Troger’s base functionalities for enhanced CO2 capture. J. Byun; S.-H. Je; H. A. Patel; A. Coskun; C. T. Yavuz, J Mater Chem A 2014, 2 (31), 12507-12512, https://doi.org/10.1039/c4ta00698d.
  3. Gas Permeability of Hexaphenylbenzene Based Polymers of Intrinsic Microporosity. M. Carta; P. Bernardo; G. Clarizia; J. C. Jansen; N. B. McKeown, Macromolecules 2014, 47 (23), 8320-8327, https://doi.org/10.1021/ma501925j.
  4. Heterogeneous organocatalysts composed of microporous polymer networks assembled by Troger’s base formation. M. Carta; M. Croad; K. Bugler; K. J. Msayib; N. B. McKeown, Polymer Chemistry 2014, 5 (18), 5262-5266, https://doi.org/10.1039/c4py00608a.
  5. Synthesis of cardo-polymers using Troger’s base formation. M. Carta; M. Croad; J. C. Jansen; P. Bernardo; G. Clarizia; N. B. McKeown, Polymer Chemistry 2014, 5 (18), 5255-5261, https://doi.org/10.1039/c4py00607k.
  6. Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Troger’s Base Polymers. M. Carta; M. Croad; R. Malpass-Evans; J. C. Jansen; P. Bernardo; G. Clarizia; K. Friess; M. Lanc; N. B. McKeown, Adv. Mater. 2014, 26 (21), 3526-3531, https://doi.org/10.1002/adma.201305783.
  7. The synthesis of microporous polymers using Troger’s base formation. M. Carta; R. Malpass-Evans; M. Croad; Y. Rogan; M. Lee; I. Rose; N. B. McKeown, Polymer Chemistry 2014, 5 (18), 5267-5272, https://doi.org/10.1039/c4py00609g.
  8. Conjugated Polymers of Intrinsic Microporosity (C-PIMs). G. Cheng; B. Bonillo; R. S. Sprick; D. J. Adams; T. Hasell; A. I. Cooper, Adv. Funct. Mater. 2014, 24 (33), 5219-5224, https://doi.org/10.1002/adfm.201401001.
  9. Ultra-Microporous Triptycene-based Polyimide Membranes for High-Performance Gas Separation. B. S. Ghanem; R. Swaidan; E. Litwiller; I. Pinnau, Adv. Mater. 2014, 26 (22), 3688-3692, https://doi.org/10.1002/adma.201306229.
  10. Energy-Efficient Hydrogen Separation by AB-Type Ladder-Polymer Molecular Sieves. B. S. Ghanem; R. Swaidan; X. Ma; E. Litwiller; I. Pinnau, Adv. Mater. 2014, 26 (39), 6696-6700, https://doi.org/10.1002/adma.201401328.
  11. Ultrathin Polymer Films with Intrinsic Microporosity: Anomalous Solvent Permeation and High Flux Membranes. P. Gorgojo; S. Karan; H. C. Wong; M. F. Jimenez-Solomon; J. T. Cabral; A. G. Livingston, Adv. Funct. Mater. 2014, 24 (30), 4729-4737, https://doi.org/10.1002/adfm.201400400.
  12. PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide. L. Hao; P. Li; T.-S. Chung, J. Membr. Sci. 2014, 453, 614-623, https://doi.org/10.1016/j.memsci.2013.11.045.
  13. Formation of Defect-Free Polyetherimide/PIM-1 Hollow Fiber Membranes for Gas Separation. L. Hao; J. Zuo; T.-S. Chung, AlChE J. 2014, 60 (11), 3848-3858, https://doi.org/10.1002/aic.14565.
  14. Estimating gas permeability and permselectivity of microporous polymers. K. E. Hart; C. M. Colina, J. Membr. Sci. 2014, 468, 259-268, https://doi.org/10.1016/j.memsci.2014.06.017.
  15. Ionomers of Intrinsic Microporosity: In Silico Development of Ionic-Functionalized Gas-Separation Membranes. K. E. Hart; C. M. Colina, Langmuir 2014, 30 (40), 12039-12048, https://doi.org/10.1021/la5027202.
  16. Synthesis, characterization and gas permeation properties of anthracene maleimide-based polymers of intrinsic microporosity. M. M. Khan; G. Bengtson; S. Neumann; M. M. Rahman; V. Abetz; V. Filiz, Rsc Adv 2014, 4 (61), 32148-32160, https://doi.org/10.1039/c4ra03663h.
  17. Sulfonation of PIM-1-towards highly oxygen permeable binders for fuel cell application. B. G. Kim; D. Henkensmeier; H.-J. Kim; J. H. Jang; S. W. Nam; T.-H. Lim, Macromolecular Research 2014, 22 (1), 92-98, https://doi.org/10.1007/s13233-014-2007-z.
  18. Predictive simulations of the structural and adsorptive properties for PIM-1 variations. G. S. Larsen; K. E. Hart; C. M. Colina, Molecular Simulation 2014, 40 (7-9), 599-609, https://doi.org/10.1080/08927022.2013.829222.
  19. Ending Aging in Super Glassy Polymer Membranes. C. H. Lau; N. Phuc Tien; M. R. Hill; A. W. Thornton; K. Konstas; C. M. Doherty; R. J. Mulder; L. Bourgeois; A. C. Y. Liu; D. J. Sprouster; J. P. Sullivan; T. J. Bastow; A. J. Hill; D. L. Gin; R. D. Noble, Angew Chem Int Edit 2014, 53 (21), 5322-5326, https://doi.org/10.1002/anie.201402234.
  20. Temperature dependence of gas sorption and permeation in PIM-1. P. Li; T. S. Chung; D. R. Paul, J. Membr. Sci. 2014, 450, 380-388, https://doi.org/10.1016/j.memsci.2013.09.030.
  21. Efficient Synthesis of Rigid Ladder Polymers via Palladium Catalyzed Annulation. S. Liu; Z. Jin; Y. C. Teo; Y. Xia, J. Am. Chem. Soc. 2014, 136 (50), 17434-17437, https://doi.org/10.1021/ja5110415.
  22. Pristine and thermally-rearranged gas separation membranes from novel o-hydroxyl-functionalized spirobifluorene-based polyimides. X. Ma; O. Salinas; E. Litwiller; I. Pinnau, Polymer Chemistry 2014, 5 (24), 6914-6922, https://doi.org/10.1039/c4py01221f.
  23. Metastable Ionic Diodes Derived from an Amine-Based Polymer of Intrinsic Microporosity. E. Madrid; Y. Rong; M. Carta; N. B. McKeown; R. Malpass-Evans; G. A. Attard; T. J. Clarke; S. H. Taylor; Y.-T. Long; F. Marken, Angew Chem Int Edit 2014, 53 (40), 10751-10754, https://doi.org/10.1002/anie.201405755.
  24. Enhancement of CO2 Affinity in a Polymer of Intrinsic Microporosity by Amine Modification. C. R. Mason; L. Maynard-Atem; K. W. J. Heard; B. Satilmis; P. M. Budd; K. Friess; M. Lanc; P. Bernardo; G. Clarizia; J. C. Jansen, Macromolecules 2014, 47 (3), 1021-1029, https://doi.org/10.1021/ma401869p.
  25. Physical aging of polymers of intrinsic microporosity: a SAXS/WAXS study. A. G. McDermott; P. M. Budd; N. B. McKeown; C. M. Colina; J. Runt, J Mater Chem A 2014, 2 (30), 11742-11752, https://doi.org/10.1039/c4ta02165g.
  26. A highly permeable polyimide with enhanced selectivity for membrane gas separations. Y. Rogan; R. Malpass-Evans; M. Carta; M. Lee; J. C. Jansen; P. Bernardo; G. Clarizia; E. Tocci; K. Friess; M. Lanc; N. B. McKeown, J Mater Chem A 2014, 2 (14), 4874-4877, https://doi.org/10.1039/c4ta00564c.
  27. High density heterogenisation of molecular electrocatalysts in a rigid intrinsically microporous polymer. Y. Rong; R. Malpass-Evans; M. Carta; N. B. McKeown; G. A. Attard; F. Marken, Electrochem. Commun. 2014, 46, 26-29, https://doi.org/10.1016/j.elecom2014.06.005.
  28. Intrinsically Porous Polymer Protects Catalytic Gold Particles for Enzymeless Glucose Oxidation. Y. Rong; R. Malpass-Evans; M. Carta; N. B. McKeown; G. A. Attard; F. Marken, Electroanal 2014, 26 (5), 904-909, https://doi.org/10.1002/elan.201400085.
  29. Base-catalysed hydrolysis of PIM-1: amide versus carboxylate formation. B. Satilmis; P. M. Budd, Rsc Adv 2014, 4 (94), 52189-52198, https://doi.org/10.1039/c4ra09907a.
  30. Thermally Rearrangeable PIM-Polyimides for Gas Separation Membranes. H. Shamsipur; B. A. Dawood; P. M. Budd; P. Bernardo; G. Clarizia; J. C. Jansen, Macromolecules 2014, 47 (16), 5595-5606, https://doi.org/10.1021/ma5011183.
  31. Positronium formation and thermostimulated luminescence: A common nature and combined application to studies of organic systems. V. P. Shantarovich; V. W. Gustov; E. V. Belousova; A. V. Polyakova; V. G. Bekeshev; I. B. Kevdina, Russ. J. Phys. Chem. B 2014, 8 (4), 559-565, https://doi.org/10.1134/S1990793114040095.
  32. Local Rigidity as a Criterion of Gas Permeation of Polymer and Composition Materials; PAL and TSL Experiments. V. P. Shantarovich; V. W. Gustov; E. V. Belousova; A. V. Polyakova; V. G. Bekeshev; I. B. Kevdina; Y. P. Yampolskii; A. V. Pastukhov, Acta Phys. Pol., A 2014, 125 (3), 806-811,
  33. One-step synthesis of carbon nanosheets converted from a polycyclic compound and their direct use as transparent electrodes of ITO-free organic solar cells. S.-Y. Son; Y.-J. Noh; C. Bok; S. Lee; B. G. Kim; S.-I. Na; H.-I. Joh, Nanoscale 2014, 6 (2), 678-682, https://doi.org/10.1039/C3NR04828D.
  34. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Q. Song; S. Cao; R. H. Pritchard; B. Ghalei; S. A. Al-Muhtaseb; E. M. Terentjev; A. K. Cheetham; E. Sivaniah, Nature Communications 2014, 5, https://doi.org/10.1038/ncomms5813.
  35. Rational Design of Intrinsically Ultramicroporous Polyimides Containing Bridgehead-Substituted Triptycene for Highly Selective and Permeable Gas Separation Membranes. R. Swaidan; M. Al-Saeedi; B. Ghanem; E. Litwiller; I. Pinnau, Macromolecules 2014, 47 (15), 5104-5114, https://doi.org/10.1021/ma5009226.
  36. Role of Intrachain Rigidity in the Plasticization of Intrinsically Microporous Triptycene-Based Polyimide Membranes in Mixed-Gas CO2/CH4 Separations. R. Swaidan; B. Ghanem; M. Al-Saeedi; E. Litwiller; I. Pinnau, Macromolecules 2014, 47 (21), 7453-7462, https://doi.org/10.1021/ma501798v.
  37. Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1. R. Swaidan; B. S. Ghanem; E. Litwiller; I. Pinnau, J. Membr. Sci. 2014, 457, 95-102, https://doi.org/10.1016/j.memsci.2014.01.055.
  38. Triptycene-Based Organic Molecules of Intrinsic Microporosity. R. G. D. Taylor; M. Carta; C. G. Bezzu; J. Walker; K. J. Msayib; B. M. Kariuki; N. B. McKeown, Org. Lett. 2014, 16 (7), 1848-1851, https://doi.org/10.1021/ol500591q.
  39. Gas permeation in thin films of “high free-volume” glassy perfluoropolymers: Part I. Physical aging. R. R. Tiwari; Z. P. Smith; H. Q. Lin; B. D. Freeman; D. R. Paul, Polymer 2014, 55 (22), 5788-5800, https://doi.org/10.1016/j.polymer.2014.09.022.
  40. Molecular Modeling and Gas Permeation Properties of a Polymer of Intrinsic Microporosity Composed of Ethanoanthracene and Troger’s Base Units. E. Tocci; L. De Lorenzo; P. Bernardo; G. Clarizia; F. Bazzarelli; N. B. McKeown; M. Carta; R. Malpass-Evans; K. Friess; K. Pilnacek; M. Lanc; Y. P. Yampolskii; L. Strarannikova; V. Shantarovich; M. Mauri; J. C. Jansen, Macromolecules 2014, 47 (22), 7900-7916, https://doi.org/10.1021/ma501469m.
  41. G. Turnbull; I. Samuel, Polymer with Intrinsic Microporosity Used as Explosive Vapour Sensors. In Low Threshold Organic Semiconductor Lasers: Hybrid Optoelectronics and Applications as Explosive Sensors, 2014; pp 123-138.
  42. Centrotriindane- and triptindane-based polymers of intrinsic microporosity. J. Vile; M. Carta; C. G. Bezzu; B. M. Kariuki; N. B. McKeown, Polymer 2014, 55 (1), 326-329, https://doi.org/10.1016/j.polymer.2013.07.035.
  43. Mixed gas sorption in glassy polymeric membranes: II. CO2/CH4 mixtures in a polymer of intrinsic microporosity (PIM-1). O. Vopicka; M. G. De Angelis; N. Du; N. Li; M. D. Guiver; G. C. Sarti, J. Membr. Sci. 2014, 459, 264-276, https://doi.org/10.1016/j.memsci.2014.02.003.
  44. Analysis of gas sorption in glassy polymers with the GAB model: An alternative to the dual mode sorption model. O. Vopicka; K. Friess, J. Polym. Sci., Part B: Polym. Phys. 2014, 52 (22), 1490-1495, https://doi.org/10.1002/polb.23588.
  45. Study on preparation of soluble polymer with intrinsic microporosity (PIM-1). C. Wang; Q. Li; X.-f. Huang; G.-h. Wang, Henan Huagong 2014, 31 (7), 28-32,
  46. Microporous Polyimides with Rationally Designed Chain Structure Achieving High Performance for Gas Separation. Z. Wang; D. Wang; J. Jin, Macromolecules 2014, 47 (21), 7477-7483, https://doi.org/10.1021/ma5017506.
  47. Troger’s Base-Based Microporous Polyimide Membranes for High-Performance Gas Separation. Z. Wang; D. Wang; F. Zhang; J. Jin, Acs Macro Lett 2014, 3 (7), 597-601, https://doi.org/10.1021/mz500184z.
  48. Troger’s base-based copolymers with intrinsic microporosity for CO2 separation and effect of Troger’s base on separation performance. Z. G. Wang; X. Liu; D. Wang; J. Jin, Polymer Chemistry 2014, 5 (8), 2793-2800, https://doi.org/10.1039/c3py01608k.
  49. Advances in Structure Controls and Modifications of PIMs Membranes for Gas Separation. X. Wu; Q. Zhang; A. Zhu; Q. Liu, Progress in Chemistry 2014, 26 (7), 1214-1222, https://doi.org/10.7536/pc131208.
  50. Polymers of intrinsic microporosity in electrocatalysis: Novel pore rigidity effects and lamella palladium growth. F. Xia; M. Pan; S. Mu; R. Malpass-Evans; M. Carta; N. B. McKeown; G. A. Attard; A. Brew; D. J. Morgan; F. Marken, Electrochim. Acta 2014, 128, 3-9, https://doi.org/10.1016/j.electacta.2013.08.169.
  51. Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy. Y. Yang; Z. Pei; X. Zhang; L. Tao; Y. Wei; Y. Ji, Chem Sci 2014, 5 (9), 3486-3492, https://doi.org/10.1039/C4SC00543K.
  52. Molecular interaction, gas transport properties and plasticization behavior of cPIM-1/Torlon blend membranes. W. F. Yong; F. Y. Li; T. S. Chung; Y. W. Tong, J. Membr. Sci. 2014, 462, 119-130, https://doi.org/10.1016/j.memsci.2014.03.046.
  53. Mechanistic insight into highly efficient gas permeation and separation in a shape-persistent ladder polymer membrane. J. Zhou; X. Zhu; J. Hu; H. Liu; Y. Hu; J. Jiang, PCCP 2014, 16 (13), 6075-6083, https://doi.org/10.1039/c3cp55498h.
  54. Intrinsically Microporous Soluble Polyimides Incorporating Troger’s Base for Membrane Gas Separation. Y. Zhuang; J. G. Seong; Y. S. Do; H. J. Jo; Z. Cui; J. Lee; Y. M. Lee; M. D. Guiver, Macromolecules 2014, 47 (10), 3254-3262, https://doi.org/10.1021/ma5007073.